精英家教网 > 初中数学 > 题目详情

【题目】某中学要在操场的一块长方形土地上进行绿化,已知这块长方形土地的长为5m,宽为4m.

(1)求该长方形土地的面积(精确到0.1 m2);

(2)如果绿化该长方形土地每平方米的造价为180元,那么绿化该长方形土地所需资金约为多少元?

【答案】(1) 244.9m2;(2)绿化该长方形土地所需资金约为44082元.

【解析】

(1)根据这块长方形土地的长a=5m,宽b=4m,直接得出面积即可;
(2)利用绿化该长方形土地每平方米的造价为180元,即可求出该长方形土地所需资金.

(1)该长方形土地的面积为5×4=100≈244.9(m2).

(2)因为绿化该长方形土地每平方米的造价为180元,

所以180×244.9=44082().

答:绿化该长方形土地所需资金约为44082元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】①在数轴上没有点能表示+1;②无理数是开不尽方的数;③存在最小的实数;④4的平方根是±2,用式子表示是=±2;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,其中正确的是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,BD平分ABC

1)作图:作BC边的垂直平分线分别交BCBD于点EF(用尺规作图法,保留作图痕迹,不要求写作法);

2)在(1)的条件下,连接CF,若A=60°ABD=24°,求ACF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y= x2+bx+c与x轴交于A(5,0)、B(﹣1,0)两点,过点A作直线AC⊥x轴,交直线y=2x于点C;

(1)求该抛物线的解析式;
(2)求点A关于直线y=2x的对称点A′的坐标,判定点A′是否在抛物线上,并说明理由;
(3)点P是抛物线上一动点,过点P作y轴的平行线,交线段CA′于点M,是否存在这样的点P,使四边形PACM是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下图甲是任意一个直角三角形ABC,它的两条直角边的边长分别为a、b,斜边长为c.如图乙、丙那样分别取四个与直角三角形ABC全等的三角形,放在边长为a+b的正方形内.

①图乙和图丙中(1)(2)(3)是否为正方形?为什么?

②图中(1)(2)(3)的面积分别是多少?

③图中(1)(2)的面积之和是多少?

④图中(1)(2)的面积之和与正方形(3)的面积有什么关系?为什么?

由此你能得到关于直角三角形三边长的关系吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第⑩个图形中小圆圈的个数为( )

A. 24 B. 27 C. 30 D. 33

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,直线l:y=mx+10mx轴负半轴、y轴正半轴分别交于A、B两点.

(1)当OA=OB时,试确定直线l的函数表达式;

(2)在(1)的条件下,如图2,设Q为直线AB上一点,作直线OQ,过A、B两点分别作AMOQM,BNOQN,若AM=8,BN=6,求MN的长;

(3)当m取不同的值时,点By轴正半轴上运动,分别以OB、AB为边,点B为直角顶点在第一、二象限内作等腰直角OBF和等腰直角ABE,连EFy轴于P点,如图3.问:当点B y轴正半轴上运动时,试猜想PB的长是否为定值?若是,请求出其值;若不是,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx经过A(4,0),B(1,3)两点,点B、C关于抛物线的对称轴l对称,过点B作直线BH⊥x轴,交x轴于点H.

(1)求抛物线的解析式;
(2)若点M在直线BH上运动,点N在x轴上运动,是否存在这样的点M、N,使得以点M为直角顶点的△CNM是等腰直角三角形?若存在,请求出点M、N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于的方程

求证:不论为任何实数,此方程总有实数根;

若方程有两个不同的整数根,且为正整数,求的值.

查看答案和解析>>

同步练习册答案