【题目】在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是( )
A.
B.
C.
D.
【答案】D
【解析】
试题分别构造出平行四边形和三角形,根据平行四边形的性质和三角形的性质进行比较,即可判断:
答如图1,A选项延长AC、BE交于S,
∵∠CAE=∠EDB=45°,∴AS∥ED. ∴SC∥DE.同理SE∥CD.
∴四边形SCDE是平行四边形. ∴SE=CD,DE=CS.
∴某人走的路线长是:AC+CD+DE+EB=AC+CS+SE+EB=AS+BS.
如答图2,B选项延长AF、BH交于S1,作FM∥GH,
∵∠SAB=∠S1AB=45°,∠SBA=∠S1BA=70°,AB=AB,
∴△SAB≌△S1AB. ∴AS=AS1,BS=BS1.
∵∠FGH=67°=∠GHB,∴FG∥HM.
∵FM∥GH,∴四边形FGHM是平行四边形.
∴FM=GH,FG=MH,∴AF+FG+GH+HB=AF+FM+MH+HB.
∵FS1+S1M>FM,
∴AS1+BS1>AF+FM+MH+MB,即AC+CD+DE+EB>AF+FG+GH+HB.
如答图3,4,同理可证得AI+IK+KM+MB<AS2+BS2<AN+NQ+QP+PB.
又∵AS+BS<AS2+BS2,故选D.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,AC=BC,斜边AB=4 ,O是AB的中点,以O为圆心,线段OC的长为半径画圆心角为90°的扇形OEF, 经过点C,则图中阴影部分的面积为( )
A.2π﹣4
B.4﹣π
C.π﹣2
D.4π﹣8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】请完成下面的解答过程完.如图,∠1=∠B,∠C=110°,求∠3的度数.
解:∵∠1=∠B
∴AD∥( )(内错角相等,两直线平行)
∴∠C+∠2=180°,( )
∵∠C=110°.
∴∠2=( )°.
∴∠3=∠2=70°.( )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠A=84°,点O是∠ABC,∠ACB角平分线的交点,点P是∠BOC,∠OCB角平分线的交点,若∠P=100°,则∠ACB的大小为__________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(类比探究)如图1,线段AD,CB相交于点O,连接AB,DC,我们把形如图1的图形称之为“X型”.如图2,在图1的条件下,∠DAB和∠BCD的平分线AE和CE相交于点E,并且与CB,AD分别相交于F,G,试解答下列问题:
(1)在图1中,请直接写出∠A,∠B,∠C,∠D之间的数量关系:____________;
(2)在图2中,共有______个“X型”;
(3)在图2中,若∠D=40°,∠B=30°,则∠AEC=_______;
(4)在图2中,若∠D=α,∠B=β,则∠AEC=__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解学生的艺术特长发展情况,某校音乐决定围绕在“舞蹈、乐器、声乐、戏曲、其他活动”项目中,你最喜欢哪一项活动(每人只限一项)的问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制如下两幅不完整的统计图.请你根据统计图解答下列问题:
(1)在这次调查中,一共抽查了名学生,其中喜欢“舞蹈”活动项目的人数占抽查总人数的百分比为 . 扇形统计图中喜欢“戏曲”部分扇形的圆心角为度.
(2)请你补全条形统计图.
(3)若在“舞蹈、乐器、声乐、戏曲”项目中任选两项成立课外兴趣小组,请用列表或画树状图的方法求恰好选中“舞蹈、声乐”这两项的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:点C在线段BD上,AC⊥CE,∠A=∠1,∠E=∠2.
(1)若∠1=70°,求∠B、∠D的度数;
(2)判断AB与ED的位置关系,并说明理由;
(3)作∠A、∠E的角平分线相交于点P,求∠P的度数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com