精英家教网 > 初中数学 > 题目详情

【题目】如图,在RtABC中,∠ACB=90°,AB=10,sinA=,CDAB边上的中线,以点B为圆心,r为半径作⊙B.如果⊙B与中线CD有且只有一个公共点,那么⊙B的半径r的取值范围为_____

【答案】5r6.

【解析】分析:根据三角函数可得BC,AC,根据直角三角形斜边上的中线的性质可求CD,BD,根据三角形面积公式可求CD边的高,再根据直线与圆的位置关系即可求解.

详解:∵在RtABC中,∠ACB=90°,AB=10,sinA=

BC=6,AC=8,

CDAB边上的中线,

CD=BD=5,

CD边的高=6×8÷2÷2×2÷5=

∵⊙B与中线CD有且只有一个公共点,

∴⊙B的半径r的取值范围为5<r≤6r

故答案为:5<r≤6r

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某校八年级全体同学参加了某项捐款活动,随机抽查了部分同学捐款的情况统计如图所示

(1)本次共抽查学生____人,并将条形图补充完整;

(2)捐款金额的众数是_____,平均数是_____

(3)在八年级700名学生中,捐款20元及以上(20)的学生估计有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=kx+b的图象分别与x轴,y轴的正半轴分別交于点ABAB=2,∠OAB=45°

1)求一次函数的解析式;

2)如果在第二象限内有一点C(a);试用含有a的代数式表示四边形ABCO的面积,并求出当ABC的面积与ABO的面积相等时a的值;

3)在x轴上,是否存在点P,使PAB为等腰三角形?若存在,请直接写出所有符合条件的点P坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC三点在数轴上,点A表示的数为-10,点B表示的数为14,点C到点A和点B之间的距离相等.

(1)AB两点之间的距离;

(2)C点对应的数;

(3)甲、乙分别从AB两点同时相向运动,甲的速度是1个单位长度/s,乙的速度是2个单位长度/s,求相遇点D对应的数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在学习绝对值后,我们知道,|a|表示数a在数轴上的对应点与原点的距离.如:|5|表示5在数轴上的对应点到原点的距离.而|5|=|50|,即|50|也可理解为50在数轴上对应的两点之间的距离.类似的,|53|表示53之差的绝对值,也可理解为53两数在数轴上所对应的两点之间的距离.如|x3|的几何意义是数轴上表示有理数3的点与表示数x的点之间的距离,一般地,点AB在数轴上分别表示数ab,那么AB之间的距离可表示为|ab|

请根据绝对值的意义并结合数轴解答下列问题:

1)数轴上表示23的两点之间的距离是 ;数轴上表示数a的点与表示﹣2的点之间的距离表示为

2)数轴上点P表示的数是2PQ两点的距离为3,则点Q表示的数是

3)数轴上有一个点表示数a,则|a+1|+|a-3|+|a+8|的最小值为

4abcd在数轴上的位置如下图所示,若|a-d|=12|b-d|=7|a-c|=9,则|b-c|等于 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:在等腰直角三角形中,AB=AC,点D是斜边BC上的中点,点E、F分别为AB,AC上的点,且DE⊥DF。(1)若设,满足.

(1)求BE及CF的长。

(2)求证:

(3)(1)的条件下,求△DEF的面积。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着信息技术的高速发展,计算机技术已是每位学生应该掌握的基本技能.为了提高学生对计算机的兴趣,老师把甲、乙两组各有10名学生,进行电脑汉字输入速度比赛,各组参赛学生每分钟输入汉字个数统计如下表:

输入汉字(个)

132

133

134

135

136

137

甲组人数(人)

1

0

1

5

2

1

乙组人数(人)

0

1

4

1

2

2

1)请你填写下表中甲班同学的相关数据.

众数

中位数

平均数(

方差(

甲组

乙组

134

134.5

135

1.8

2)若每分钟输入汉字个数136及以上为优秀,则从优秀人数的角度评价甲、乙两组哪个成绩更好一些?

3)请你根据所学的统计知识,从不同角度评价甲、乙两组学生的比赛成绩(至少从两个角度进行评价).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在梯形ABCD中,ADBC,C=90°,DC=5,以CD为半径的⊙C与以AB为半径的⊙B相交于点E、F,且点EBD上,联结EFBC于点G.

(1)设BC与⊙C相交于点M,当BM=AD时,求⊙B的半径;

(2)设BC=x,EF=y,求y关于x的函数关系式,并写出它的定义域;

(3)当BC=10时,点P为平面内一点,若⊙P与⊙C相交于点D、E,且以A、E、P、D为顶点的四边形是梯形,请直接写出⊙P的面积.(结果保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】11·湖州)(本小题10分)

如图,已知EF分别是□ABCD的边BCAD上的点,且BE=DF

求证:四边形AECF是平行四边形;

BC=10∠BAC=90°,且四边形AECF是菱形,求BE的长。

查看答案和解析>>

同步练习册答案