精英家教网 > 初中数学 > 题目详情

【题目】已知a=﹣(2)2×3b|9|+(7)c()÷

(1)2[a(b+c)][b(a2c)]的值.

(2)A()2÷()+(1)2×(13)2B|a|5b+2c,试比较AB的大小.

(3)如图,已知点D是线段AC的中点,点B是线段DC上的一点,且CBBD23,若ABcm,求BC的长.

【答案】(1)34(2)AB(3)BC0.25cm.

【解析】

1)先计算出abc的值,然后把值代入化简后的代数式;(2)注意负数的乘方运算和基本的有理数的运算;(3)灵活的应用中点,从比例因为未知数建立方程,将线段问题转为方程问题.

(1)a=﹣4×3=﹣12b972c=﹣2

原式=2a2(b+c)b+(a2c)3a3b4c

a=﹣12b2c=﹣2时,原式=3×(12)3×24×(2)=﹣34

(2)A×(27)+ ×4=﹣2B125×2+2×(2)=﹣2,∴AB

(3)AB1(cm)

CB2xBD3x,则DCCB+BD5x

∵点D是线段AC的中点,

ADDC5xAB8x

8x1xBCcm.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O直径,AC为⊙O的弦,过⊙O外的点D作DE⊥OA于点E,交AC于点F,连接DC并延长交AB的延长线于点P,且∠D=2∠A,作CH⊥AB于点H.

(1)判断直线DC与⊙O的位置关系,并说明理由;
(2)若HB=2,cosD= ,请求出AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知ABC 中,A=60°ACB=40°DBC边延长线上一点,BM平分ABCE为射线BM上一点.

1)如图1,连接CE

CEAB,求BEC的度数;

CE平分ACD,求BEC的度数.

2)若直线CE垂直于ABC的一边,请直接写出BEC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将两块直角三角板的直角顶点C叠放在一起.

(1)若∠DCE28°10',求∠ACB的度数;

(2)若∠ACB148°21',求∠DCE的度数;

(3)直接写出∠ACB与∠DCE的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3篇不同的文章中抽取一篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A、B、C,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶总D的仰角为18°,教学楼底部B的俯角为20°,量得实验楼与教学楼之间的距离AB=30m.
(结果精确到0.1m。参考数据:tan20°≈0.36,tan18°≈0.32)

(1)求∠BCD的度数.
(2)求教学楼的高BD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】怡然美食店的A,B两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1120元,总利润为280元.
(1)该店每天卖出这两种菜品共多少份?
(2)该店为了增加利润,准备降低A种菜品的售价,同时提高B种菜品的售价,售卖时发现,A种菜品售价每降0.5元可多卖1份;B种菜品售价每提高0.5元就少卖1份,如果这两种菜品每天销售总份数不变,那么这两种菜品一天的总利润最多是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某蔬菜种植农户购买白菜苗和西红柿苗共1000株,其中白菜苗每株3元,西红柿苗每株5元.已知该农户打算用不少于3600元但不多于3800元的资金购买两种蔬菜.

1)求该农户可以购买白菜苗株数的最大值和最小值;

2)该农户按(1)中购买白菜苗株数的最小值的方案购买两种蔬菜苗,经过农户的精心培育,两种蔬菜苗全成活.根据以往的数据分析,平均一株白菜苗可长成2千克白菜,平均一株西红柿苗可结3千克西红柿.农户计划采用直接销售和生态采摘销售两种方式进行销售,其中直接销售白菜的售价为每千克4元,直接销售西红柿的售价为每千克5元;生态采摘销售时两种蔬菜的售价一样,都比直接销售白菜的售价高,但生态采摘过程中会有的损耗.当白菜和西红柿各直接销售一半后、剩下的全部采用生态采摘销售时,该农户可获得8080元的利润.求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线y=kx+b与抛物线y=ax2(a>0)相交于A、B两点(点A在点B的左侧),与y轴正半轴相交于点C,过点A作AD⊥x轴,垂足为D.

(1)若∠AOB=60°,AB∥x轴,AB=2,求a的值;
(2)若∠AOB=90°,点A的横坐标为﹣4,AC=4BC,求点B的坐标;
(3)延长AD、BO相交于点E,求证:DE=CO.

查看答案和解析>>

同步练习册答案