【题目】我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应展开式中的系数;第四行的四个数1,3,3,1,恰好对应着展开式中的系数等等.
(1)根据上面的规律,写出的展开式.
(2)利用上面的规律计算:
科目:初中数学 来源: 题型:
【题目】小楠是一个乐学习,善思考,爱探究的同学,她对函数的图象和性质进行了探究,请你将下列探究过程补充完整:
(Ⅰ)函数的自变量x的取值范围是 .
(Ⅱ)用描点法画函数图象:
(i)列表:
x | … | ﹣5 | ﹣2 | ﹣1 | 0 | … | 2 | 3 | 4 | 7 | … |
y | … | a | 2 | 3 | b | … | 6 | 3 | 2 | 1 | … |
表中a的值为 ,b的值为 .
(ii)描点连线:请在下图画出该图象的另一部分.
(Ⅲ)观察函数图象,得到函数的性质:
当x 时,函数值y随x的增大而 ;
当x 时,函数值y随x的增大而减少.
(IV)应用:若≥6,则x的取值范围是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店需要购进甲、乙两种商品共1000件,其进价和售价如下表所示:
甲 | 乙 | |
进价(元/件) | 15 | 35 |
售价(元/件) | 18 | 44 |
(1)若商店计划销售完这批商品后能获利4200元,则甲、乙两种商品应分别购进多少件;
(2)若该商店销售完这批商品后获利要多于5000元,则至少应购进乙种商品多少件?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】防疫期间的某天上午9:00,社区工作人员小孙从社区办公室出发,上门为本社区两户隔离人员家庭送生活用品,同时了解隔离人员的健康状况,她先去了距离社区较近的张家,稍作停留简单询问了情况后,又去了稍远一点的李家,这家人口较多,了解情况时间稍长一些,由于社区还有其它事情等待处理,结束工作后她快速返回社区办公室.已知小孙距离社区办公室的距离(米)与离开办公室的时间(分)之间的关系如图所示.请根据图象回答下列问题:
(1)图中点表示的意义是什么?
(2)小孙从李家出来后步行的速度是多少?
(3)小孙在李家停留了几分钟?小孙几点回到社区办公室?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是由一些棱长为1的小立方块所搭几何体的三种视图.若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个长方体,至少还需要个小立方块.最终搭成的长方体的表面积是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】操作与证明:
如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.
(1)连接AE,求证:△AEF是等腰三角形;
猜想与发现:
(2)在(1)的条件下,请判断线段MD与MN的关系,得出结论;
结论:DM、MN的关系是: ;
拓展与探究:
(3)如图2,将图1中的直角三角板ECF绕点C旋转180°,其他条件不变,则(2)中的结论还成立吗?若成立,请加以证明;若不成立,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】正方形网格中,每个小正方形的边长为1个单位长度建立如图所示的平面直角坐标系,的顶点均为格点,把向左平移5个单位长度,再向下平移2个单位长度,得到.
(1)在图中画出;
(2)点在轴上,且与的面积相等,则点的坐标为 ;
(3)横、纵坐标均为整数的点称为整数点,在第一象限中的整数点满足,直接写出整数点的所有可能坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com