【题目】如图,直线y=x与双曲线y=(k>0,x>0)交于点A,将直线y=x向上平移2个单位长度后,与y轴交于点C,与双曲线交于点B,若OA=3BC,则k的值为____.
【答案】.
【解析】
先根据一次函数平移的性质求出平移后函数的解析式,再分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,再设A(3x, x),由于OA=3BC,故可得出B(x,+2),再根据反比例函数中k=xy为定值求出k.
解:∵将直线y=向上平移2个单位长度后,与y轴交于点C,
∴平移后直线的解析式为y=x+2,
如图:分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,设A(3x,x),),
∵OA=3BC,BC∥OA,CF∥x轴,
∴△BCF∽△AOD,
∴CF=OD,
∵点B在直线y=x+2上,
∴B(x,x+2),
∵点A、B在双曲线y=,
∴,解得x=,
∴ .
故答案为:
科目:初中数学 来源: 题型:
【题目】定义:在方格纸中,每个小格的顶点叫做格点,以格点为顶点的三角形叫做格点三角形.已知图1,图2中的每一个小方格的边长都为1.
(1)的三边长为,,.
①在图1中画一个符合题意的;
②求的边上的高线长;
(2)在的方格纸纸板中最多能剪下(要完整不拼凑)多少个与(1)中全等的三角形?并在图2中设计出来.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,菱形的顶点、在菱形的边上,且,请直接写出的结果(不必写计算过程)
(2)将图1中的菱形绕点旋转一定角度,如图2,求;
(3)把图2中的菱形都换成矩形,如图3,且,此时的结果与(2)小题的结果相比有变化吗?如果有变化,直接写出变化后的结果(不必写计算过程);若无变化,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法正确的是( )
A.“打开电视机,正在播世界杯足球赛”是必然事件
B.甲组数据的方差是,乙组数据的方差是,则乙组数据比甲组数据稳定
C.一组数据2,3,4,5,5,6的众数和中位数都是5
D.“掷一枚硬币,正面朝上的概率是0.5”表示每抛掷硬币2次就有1次正面朝上
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数的图像与反比例函数的图像交于,两点,与轴分别交于两点,且.
(1)求一次函数和反比例函数的解析式;
(2)若点与点关于轴对称,连接,求的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线交x轴于A,B两点,交y轴于点C.直线经过点A,C.
(1)求抛物线的解析式;
(2)点P是抛物线上一动点,过点P作x轴的垂线,交直线AC于点M,设点P的横坐标为m.
①当是直角三角形时,求点P的坐标;
②作点B关于点C的对称点,则平面内存在直线l,使点M,B,到该直线的距离都相等.当点P在y轴右侧的抛物线上,且与点B不重合时,请直接写出直线的解析式.(k,b可用含m的式子表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】给定一个函数,如果这个函数的图象上存在一个点,它的横、纵坐标相等,那么这个点叫做该函数的不变点.
(1)一次函数的不变点的坐标为______.
(2)二次函数的两个不变点分别为点(在的左侧),将点绕点顺时针旋转90°得到点,求点的坐标.
(3)已知二次函数的两个不变点的坐标为.
①求的值;
②如图,设抛物线与线段围成的封闭图形记作.点为一次函数的不变点,以线段为边向下作正方形.当两点中只有一个点在封闭图形的内部(不包含边界)时,求出的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在中,以为斜边,作直角,使点落在内,.
(1)如图1,若,,,点,、分别为,的中点,连接,求线段的长;
(2)如图2,若,把绕点递时针旋转一定角度,得到,连接并延长变于点,求证:;
(3)如图3,若,过点的直线交于点,交于点,,且,请直接写出线段、、之间的关系(不需要证明).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com