【题目】如图,一次函数(k1、b为常数,k1≠0)的图象与反比例函数的图象交于点A(m,8)与点B(4,2).
①求一次函数与反比例函数的解析式.
②根据图象说明,当x为何值时,.
科目:初中数学 来源: 题型:
【题目】如图,梯形ABCD中,AD∥BC,DC⊥BC,且∠B=45°,AD=DC=1,点M为边BC上一动点,联结AM并延长交射线DC于点F,作∠FAE=45°交射线BC于点E、交边DCN于点N,联结EF.
(1)当CM:CB=1:4时,求CF的长.
(2)设CM=x,CE=y,求y关于x的函数关系式,并写出定义域.
(3)当△ABM∽△EFN时,求CM的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】兴隆湖是成都天府新区著名的生态绿地工程.在一次户外综合实践活动中,小明同学所在的兴趣小组用无人机航拍测量云图广场A与南山码头B的直线距离.由于无人机控制距离有限,为了安全,不能直接测量,他们采用如下方法:如图,小明在云图广场A的正上方点C处测得南山码头B的俯角α=17.09°;接着无人机往南山码头B方向水平飞行0.9千米到达点D处,测得此时南山码头B的俯角β=45°.已知AC⊥AB,CD∥AB,请根据测量数据计算A,B两地的距离.(结果精确到0.1km,参考数据:sinα≈0.29,tanα≈0.31,sinβ≈0.71)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为迎接暑假旅游高峰的到来,某旅游纪念品商店决定购进A、B两种纪念品.若购进A种纪念品7件,B种纪念品4件,需要760元;若购进A种纪念品5件.B种纪念品8件,需要800元.
(1)求购进A、B两种纪念品每件各需多少元?
(2)若该商店决定购进这两种纪念品共100件.考虑市场需求和资金周转,这100件纪念品的资金不少于7000元,但不超过7200元,那么该商店共有几种进货方案?
(3)若销售A种纪念品每件可获利润30元,B种纪念品每件可获利润20元,用(2)中的进货方案,哪一种方案可获利最大?最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2016年,某贫困户的家庭年人均纯收入为2500元,通过政府产业扶持,发展了养殖业后,到2018年,家庭年人均纯收入达到了3600元.
(1)求该贫困户2016年到2018年家庭年人均纯收入的年平均增长率;
(2)若年平均增长率保持不变,2019年该贫困户的家庭年人均纯收入是否能达到4200元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:内接于,直径交边于点,.
(1)如图所示,求证:;
(2)如图所示,过点作于H,交于,交于点,连接,求证:;
(3)如图所示,在(2)的条件下,延长至点,连接、,过点作于,射线交于点,交于点,连接,,若,,求的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线:y1=与x轴、y轴相交于A、B两点,与双曲线(k<0,x>0)相交于第四象限的点C,过点C作直线l⊥x轴,垂足为D,若△ABD的面积为,且B是AC的中点.
(1)求k的值;
(2)直接写出的解集;
(3)若P为直线l的一动点,点P的纵坐标为m,∠APB≥30°,求m的范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(12分)某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利44元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出5件.
(1)若商场平均每天要盈利1600元,每件衬衫应降价多少元?
(2)若该商场要每天盈利最大,每件衬衫应降价多少元?盈利最大是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数图象的一部分如图所示,给出以下结论:;当时,函数有最大值;方程的解是,;,其中结论错误的个数是
A. 1B. 2C. 3D. 4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com