精英家教网 > 初中数学 > 题目详情

【题目】如图,已知正方形ABCD的边长为6BE=EC,将正方形边CD沿DE折叠到DF,延长EFABG,连接DG,现在有如下4个结论:在以上4个结论中,正确的有(

A. 1B. 2C. 3D. 4

【答案】C

【解析】

根据正方形的性质和折叠的性质可得AD=DF,∠A=GFD=90°,于是根据“HL”判定ADG≌△FDG,再由GF+GB=GA+GB=12EB=EFBGE为直角三角形,可通过勾股定理列方程求出AG=4BG=8,进而求出BEF的面积,再抓住BEF是等腰三角形,而GED显然不是等腰三角形,判断③是错误的.

解:由折叠可知,DF=DC=DA,∠DFE=C=90

∴∠DFG=A=90

RtADGRtFDG

RtADGRtFDGHL),故①正确;

∵正方形边长为6

BE=EC=EF=3

AG=FG=x,则EG=x+3BG=6x

由勾股定理得:

即:

解得:;

AG=GF=2BG=4BG=2AG,故②正确;

BE=EF=3BEF是等腰三角形,易知GED不是等腰三角形,故③错误;

SGBE=SBEF,故④正确。

故正确的有①②④,选C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某校开设了“3D”打印、数学史、诗歌欣赏、陶艺制作四门校本课程,为了解学生对这四门校本课程的喜爱情况,对学生进行了随机问卷调查(问卷调查表如图所示),将调查结果整理后绘制了(图1)、(图2)两幅均不完整的统计图.

请您根据图中提供的信息回答下列问题:

1)统计图中的a= b=

2)“D”对应扇形的圆心角为 度;

3)根据调查结果,请您估计该校1200名学生中最喜欢“数学史”校本课程的人数;

4)小明和小亮参加校本课程学习,若每人从“A”、“B”、“C”三门校本课程中随机选取一门,请用画树状图或列表格的方法,求两人恰好选中同一门校本课程的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:

1 2 3

1)初步思考:

如图1 中,已知BC=4NBC上一点且,试说明:

2)问题提出:

如图2,已知正方形ABCD的边长为4,圆B的半径为2,点P是圆B上的一个动点,求的最小值.

3)推广运用:

如图3,已知菱形ABCD的边长为4,∠B60°,圆B的半径为2,点P是圆B上的一个动点,求的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰△ABC的底边BC=20,面积为120,点F在边BC上,且BF=3FC,EG是腰AC的垂直平分线,若点DEG上运动,则△CDF周长的最小值为__

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,AB=AC,点E,F在边BC上,BE=CF,点DAF的延长线上,AD=AC.

(1)求证:ABE≌△ACF;

(2)若∠BAE=30°,则∠ADC=   °.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点,点,点.

1)画出关于轴的对称图形,并写出点的对称点的坐标;

2)若点轴上,连接,则的最小值是

3)若直线轴,与线段分别交于点(点不与点重合),若将沿直线翻折,点的对称点为点,当点落在的内部(包含边界)时,点的横坐标的取值范围是 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是半圆圆O的直径,C是弧AB的中点,M是弦AC的中点,CHBM,垂足为H.求证

1)∠AHO=90°

2)求证:CH=AHOH.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点Ax1y1)、Bx2y2)在二次函数yx2mxn的图像上,当x11x23时,y1y2

1)若Pab1),Q3b2)是函数图象上的两点,b1b2,则实数a的取值范围是(

Aa1 Ba3 Ca1a3 D1a3

2)若抛物线与x轴只有一个公共点,求二次函数的表达式.

3)若对于任意实数x1x2都有y1y2≥2,则n的范围是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有一个圆和两个正六边形6个顶点都在圆周上,6条边都和圆相切(我们称分别为圆的外切正六边形和内接正六边形),若设的周长分别为,圆的半径为,则_______;正六边形的面积比的值是____

查看答案和解析>>

同步练习册答案