【题目】在△ABC中,AB=AC,点D是直线BC上一点(不与B. C重合),以AD为一边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC.设∠BAC=α,∠BCE=β.
(1)如图1,如果∠BAC=90,∠BCE=___度;
(2)如图2,你认为α、β之间有怎样的数量关系?并说明理由。
(3)当点D在线段BC的延长线上移动时,α、β之间又有怎样的数量关系?请在备用图上画出图形,并直接写出你的结论。
【答案】(1)90°;(2)α+β=180°,理由见解析;(3)α+β=180°,理由见解析
【解析】
(1)根据题干中给出的条件可以证明△ABD≌△ACE,即可证明∠B=∠ACE,即可求出∠BCE的度数;
(2)根据(1)中的△ABD≌△ACE,可以证明α+β=180°;
(3)连接AD,作AE使得∠DAE=∠BAC,AE=AD,连接DE、CE,可得△ABD≌△ACE(SAS),即可证明:α+β=180°.
(1)∵∠DAE=∠BAC,∠BAC=∠BAD+∠DAC,∠DAE=∠EAC+∠DAC;
∴∠CAE=∠BAD;
在△ABD和△ACE中,
,
∴△ABD≌△ACE(SAS);
∴∠B=∠ACE;
∴∠BCE=∠BCA+∠ACE=∠BCA+∠B=180∠BAC=90°;
(2)由(1)中可知β=180°α,
∴α、β存在的数量关系为α+β=180°;
(3)连接AD,作AE使得∠DAE=∠BAC,AE=AD,连接DE、CE,可得下图:
∵∠BAD=∠BAC+∠CAD,∠CAE=∠DAE+∠CAD,∴∠BAD=∠CAE;
在△ABD和△ACE中,
∴△ABD≌△ACE(SAS);
∴∠B=∠ACE;
∴∠BCE=∠BCA+∠ACE=∠BCA+∠B=180°∠BAC.
∴α、β存在的数量关系为α+β=180°;
科目:初中数学 来源: 题型:
【题目】已知抛物线y1=ax2+2x+c与直线y2=kx+b交于点A(-1,0)、B(2,3).
(1)求a、b、c的值;
(2)直接写出当y1<y2时,自变量的范围是__________________________.
(3)若点C是抛物线的顶点,求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】分已知关于x的一元二次方程(m-2)x2+(2m+1)x+m=0有两个实数根x1,x2.
(1)求m的取值范围.
(2)若|x1|=|x2|,求m的值及方程的根.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF.
(1)求证:ABCD是菱形;
(2)若AB=5,AC=6,求ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为加强学生安全意识,组织全校学生参加安全知识竞赛。从中抽取部分学生成绩(得分取正整数值,满分为100分)进行统计,绘制以下两幅不完整的统计图.
请根据图中的信息,解决下列问题:
(1)填空:a=_____,n=_____;
(2)补全频数直方图;
(3)该校共有2000名学生.若成绩在70分以下(含70分)的学生安全意识不强,则该校安全意识不强的学生约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】直角三角形的铁片ABC的两条直角边BC,AC的长分别为3cm和4cm,如图所示分别采用⑴,⑵两种方法,剪去一块正方形铁片,为了使剪去正方形铁片后剩下的边角料较少,试比较哪一种剪法较为合理,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在直角坐标系中,已知点A、B的坐标是(a,0)(b,0),a,b满足方程组,C为y轴正半轴上一点,且S△ABC=6.
(1)求A、B、C三点的坐标;
(2)是否存在点P(t,t),使S△PAB=S△ABC?若存在,请求出P点坐标;若不存在,请说明理由;
(3)若点C沿y轴负半轴方向以每秒1个单位长度平移至点D,当运动时间t为多少秒时,四边形ABCD的面积S为15个平方单位?求出此时点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市公共自行车服务公司调查某中学学生对公共自行车的了解情况,随机抽取部分学生进行问卷,结果分“非常了解”、“比较了解”、“一般了解”、“不了解”四种类型,分别记为A、B、C、D.根据调查结果绘制了如下尚不完整的统计图.
(1)本次问卷共随机调查了 名学生,扇形统计图中 .
(2)请根据数据信息补全条形统计图,并求扇形统计图中“D类型”所对应的圆心角.
(3)若该校有1000名学生,估计选择“非常了解”、“比较了解”共约有多少人?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com