精英家教网 > 初中数学 > 题目详情

【题目】如图,ABC中,AB=BCAC=8tanA=kPAC边上一动点,设PC=x,作PEABBCEPFBCABF

1)证明:PCE是等腰三角形;

2EMFNBH分别是PECAFPABC的高,用含xk的代数式表示EMFN,并探究EMFNBH之间的数量关系;

3)当k=4时,求四边形PEBF的面积Sx的函数关系式.x为何值时,S有最大值?并求出S的最大值.

【答案】解:(1)证明:∵AB=BC∴∠A=∠C

∵PE∥AB∴∠CPE=∠A

∴∠CPE=∠C∴△PCE是等腰三角形。

2∵△PCE是等腰三角形,EM⊥CP∴CM=CP=tanC=tanA=k

∴EM=CMtanC=k=

同理:FN=ANtanA=k=4k﹣

由于BH=AHtanA=×8k=4kEM+FN=+4k﹣=4k

∴EM+FN=BH

3)当k=4时,EM=2xFN=16﹣2xBH=16

∴SPCE=x2x=x2SAPF=8﹣x16﹣2x=8﹣x2SABC=×8×16=64

k=4时,四边形PEBF的面积Sx的函数关系式为

x=4时,S有最大值32

【解析】

1)根据等边对等角可得∠A=∠C,然后根据两直线平行,同位角相等求出∠CPE=∠A,从而得到∠CPE=∠C,即可得证。

2)根据等腰三角形三线合一的性质求出CM=CP,然后求出EM,同理求出FNBH的长,再根据结果整理可得EM+FN=BH

3)分别求出EMFNBH,然后根据SPCESAPFSABC,再根据,整理即可得到Sx的关系式,然后利用二次函数的最值问题解答。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:y-2x3成正比例,且x=4y=8.

(1)yx之间的函数关系式;

(2)y=-6时,求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某中学校园内有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,学校计划在中间留一块边长为(a+b)米的正方形地块修建一座雕像,然后将阴影部分进行绿化.

1)求绿化的面积.(用含ab的代数式表示)

2)当a2b4时,求绿化的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在学校组织的文明出行知识竞赛中,81)和82)班参赛人数相同,成绩分为ABC三个等级,其中相应等级的得分依次记为A100分、B90分、C80分,达到B级以上(含B级)为优秀,其中82)班有2人达到A级,将两个班的成绩整理并绘制成如下的统计图,请解答下列问题:

1)求各班参赛人数,并补全条形统计图;

2)此次竞赛中82)班成绩为C级的人数为_______人;

3)小明同学根据以上信息制作了如下统计表:

平均数(分)

中位数(分)

方差

81)班

m

90

n

82)班

91

90

29

请分别求出mn的值,并从优秀率和稳定性方面比较两个班的成绩;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图1OM是∠AOB的平分线,点COM上,OC5,且点COA的距离为3.过点CCDOACEOB,垂足分别为DE,易得到结论:OD+OE等于多少;

1)把图1中的∠DCE绕点C旋转,当CDOA不垂直时(如图2),上述结论是否成立?并说明理由;

2)把图1中的∠DCE绕点C旋转,当CDOA的反向延长线相交于点D时:

①请在图3中画出图形;

②上述结论还成立吗?若成立,请给出证明;若不成立,请直接写出线段ODOE之间的数量关系,不需证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AEABAEABBCCDBCCD,请按图中所标注的数据,计算图中实线所围成的面积S是(

A.50B.62C.65D.68

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一种实验用轨道弹珠,在轨道上行驶5分钟后离开轨道,前2分钟其速度v(米/分)与时间t(分)满足二次函数v=at2,后三分钟其速度v(米/分)与时间t(分)满足反比例函数关系,如图,轨道旁边的测速仪测得弹珠1分钟末的速度为2米/分,求:

(1)二次函数和反比例函数的关系式.

(2)弹珠在轨道上行驶的最大速度.

【答案】(1)v=(2<t≤5) (2)8米/分

【解析】分析:(1)由图象可知前一分钟过点(1,2),后三分钟时过点(2,8),分别利用待定系数法可求得函数解析式;

(2)把t=2代入(1)中二次函数解析式即可.

详解:(1)v=at2的图象经过点(1,2),

a=2.

∴二次函数的解析式为:v=2t2,(0≤t≤2);

设反比例函数的解析式为v=

由题意知,图象经过点(2,8),

k=16,

∴反比例函数的解析式为v=(2<t≤5);

(2)∵二次函数v=2t2,(0≤t≤2)的图象开口向上,对称轴为y轴,

∴弹珠在轨道上行驶的最大速度在2秒末,为8/分.

点睛:本题考查了反比例函数和二次函数的应用.解题的关键是从图中得到关键性的信息:自变量的取值范围和图象所经过的点的坐标.

型】解答
束】
24

【题目】阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC=∠DAE,AB=AC,AD=AE,则BD=CE.

(1)在图1中证明小胖的发现;

借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题:

(2)如图2,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD;

(3)如图3,在ABC中,AB=AC,BAC=m°,点E为ABC外一点,点D为BC中点,∠EBC=∠ACF,ED⊥FD,求EAF的度数(用含有m的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点A11),B(-11),C04.

1)在平面直角坐标系中描出ABC三点;

2)在同一平面内,点与三角形的位置关系有三种:点在三角形内、点在三角形边上、 点在三角形外.若点PABC外,请判断点P关于y轴的对称点P′ABC的位置关系,直接写出判断结果.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线轴交于两点(点轴的正半轴上),与轴交于点,矩形的一条边在线段上,顶点分别在线段上.

求点的坐标;

若点的坐标为,矩形的面积为,求关于的函数表达式,并指出的取值范围;

当矩形的面积取最大值时,

①求直线的解析式;

②在射线上取一点,使,若点恰好落在该抛物线上,则________.

查看答案和解析>>

同步练习册答案