精英家教网 > 初中数学 > 题目详情

【题目】某校科技实践社团制作实践设备,小明的操作过程如下:

①小明取出老师提供的圆形细铁环,先通过在圆一章中学到的知识找到圆心O,再任意找出圆O的一条直径标记为AB(如图1),测量出AB=4分米;

②将圆环进行翻折使点B落在圆心O的位置,翻折部分的圆环和未翻折的圆环产生交点分别标记为CD(如图2);

③用一细橡胶棒连接CD两点(如图3);

④计算出橡胶棒CD的长度.

小明计算橡胶棒CD的长度为( )

A. 2分米 B. 2分米 C. 3分米 D. 3分米

【答案】B

【解析】如下图,过点OOE⊥CD于点E,连接OC,

∴CD=2CE,∠OEC=90°,

∵⊙O的直径为4

∴OC=2

由题意可知OE=O的半径

∴OE=1,

RtOCE中,CE=

CE=

CD=2CE=(分米).

故选B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知GH分别是□ABCD对边ADBC上的点,直线GH分别交BADC的延长线于点EF

1)当 的值;

2)联结BDEF于点M,求证:MG·ME=MF·MH.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们用表示不大于的最大整数,例如:;用表示大于的最小整数,例如:.解决下列问题:

1= ,=

2)若=2,则的取值范围是 ;若=1,则的取值范围是

3)已知满足方程组,求的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形ABCD中,AB3AD4,将△ABD沿着BD折叠,使点A与点E重合.

1)如图,对角线ACBD相交于点O,连接OE,则线段OE的长=

2)如图,过点EEFCD交线段BD于点F,连接AF,求证:四边形ABEF是菱形;

3)如图,在(2)条件下,线段AEBD相交于M,连接CE,求线段CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,△ABC的顶点坐标为:A(1,2),B(2, 一1), C (4, 3).

(1)将△ABC向左平移2个单位长度,再向上平移1个单位长度,得△A'B'C'.画出△A'B'C',并写出△A'B'C'的顶点坐标;

(2)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,直线APx轴于点Pp0),交y轴于点A0a),且ap满足

1)求直线AP的解析式;

2)如图1,点P关于y轴的对称点为QR02),点S在直线AQ上,且SR=SA,求直线RS的解析式和点S的坐标;

3)如图2,点B(﹣2b)为直线AP上一点,以AB为斜边作等腰直角三角形ABC,点C在第一象限,D为线段OP上一动点,连接DC,以DC为直角边,点D为直角顶点作等腰三角形DCEEFx轴,F为垂足,下列结论:①2DP+EF的值不变;②的值不变;其中只有一个结论正确,请你选择出正确的结论,并求出其定值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个二次函数图象上部分点的横坐标x,纵坐标y的对应值如下表:

(1)求这个二次函数的表达式;

(2)m的值;

(3)在给定的直角坐标系中,画出这个函数的图象;

(4)根据图象,写出当y0时,x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=BC=4AO=BOP是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点D、E分别在△ABC的边AC、BC上,线段BD与AE交于点F,且CDCA=CECB.

(1)求证:∠CAE=∠CBD;

(2)若,求证:ABAD=AFAE.

查看答案和解析>>

同步练习册答案