【题目】如图:已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC边上的中点,两边PE,PF分别交AB,AC于点E,F,给出以下四个结论:
①AE=CF;②EF=AP;③2S四边形AEPF=S△ABC;④当∠EPF在△ABC内绕顶点P旋转时(点E不与A,B重合)有BE+CF=EF;上述结论中始终正确的序号有__________.
【答案】①③
【解析】
根据题意,容易证明△AEP≌△CFP,然后能推理得到①③都是正确.
∵AB=AC,∠BAC=90°,点P是BC的中点,
∴∠EAP=∠BAC=45°,AP=BC=CP.
①在△AEP与△CFP中,
∵∠EAP=∠C=45°,AP=CP,∠APE=∠CPF=90°-∠APF,
∴△AEP≌△CFP,
∴AE=CF.正确;
②只有当F在AC中点时EF=AP,故不能得出EF=AP,错误;
③∵△AEP≌△CFP,同理可证△APF≌△BPE.
∴S四边形AEPF=S△AEP+S△APF=S△CPF+S△BPE=S△ABC,即2S四边形AEPF=S△ABC;正确;
④根据等腰直角三角形的性质,EF=PE,
所以,EF随着点E的变化而变化,只有当点E为AB的中点时,EF=PE=AP,在其它位置时EF≠AP,故④错误;
故答案为:①③.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,DE垂直平分AB.
(1)若AB=AC=10cm,BC=6cm,求△BCE的周长;
(2)若∠A=40°,求∠EBC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在Rt△ABC中,∠B=90°,点P从点A出发,沿A→B→C以1cm/s的速度运动.设△APC的面积为s(m),点P的运动时间为t(s),变量S与t之间的关系如图2所示,则在运动过程中,S的最大值是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A(-2,n),B(1,-2)是一次函数y=kx+b的图象和反比例函数的图象的两个交点.
(1)求反比例函数和一次函数的解析式;
(2)若C是x轴上一动点,设t=CB-CA,求t的最大值,并求出此时点C的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线(m>0)与x轴相交于点A,B,与y轴相交于点C,且点A在点B的左侧.
(1)若抛物线过点(2,2),求抛物线的解析式;
(2)在(1)的条件下,抛物线的对称轴上是否存在一点H,使AH+CH的值最小,若存在,求出点H的坐标;若不存在,请说明理由;
(3)在第四象限内,抛物线上是否存在点M,使得以点A,B,M为顶点的三角形与△ACB相似?若存在,求出m的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,D是BC的中点,则下列结论正确的是( )
①△ABD≌△ACD;②∠B=∠C;③∠BAD=∠CAD;④AD⊥BC
A. ①②③B. ②③④C. ①②④D. ①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,AB=6,∠B=60°,点G是CD边的中点,点E、F分别是AG、AD上的两个动点,则EF+ED的最小值是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△PMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCD中AB=2cm,BC=10cm,点C和点M重合,点B、C(M)、N在同一直线上,令Rt△PMN不动,矩形ABCD沿MN所在直线以每秒1cm的速度向右移动,至点C与点N重合为止,设移动x秒后,矩形ABCD与△PMN重叠部分的面积为y,则y与x的大致图象是( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com