【题目】学校拟购进一批手动喷淋消毒设备,已知1个A型喷雾器和2个B型喷雾器共需90元;2个A型喷雾器和3个B型喷雾器共需165元.
(1)问一个A型喷雾器和一个B型喷雾器的单价各是多少元?
(2)学校决定购进两种型号的喷雾器共60个,并且要求B型喷雾器的数量不能多于A型喷雾器的4倍,请你设计出最为省钱的购买方案,并说明理由.
【答案】(1)一个A型喷雾器的单价为60元,一个B型喷雾器的单价为15元;(2)最省钱的购买方案为:购买A型喷雾器12个,B型喷雾器48个.
【解析】
(1)设一个A型喷雾器的单价为元,一个B型喷雾器的单价为元,根据1个A型喷雾器和2个B型喷雾器共需90元;2个A型喷雾器和3个B型喷雾器共需165元列出方程组进行求解即可;
(2)设购进A型喷雾器个,则购进B型喷雾器个,根据题意先求出m的取值范围,再设这些喷雾器的总费用为W元,得到W关于m的函数解析式,利用一次函数的性质进行求解即可.
(1)设一个A型喷雾器的单价为元,一个B型喷雾器的单价为元,由题意可得:
解之得:,
答:一个A型喷雾器的单价为60元,一个B型喷雾器的单价为15元;
(2)设购进A型喷雾器个,则购进B型喷雾器个,由题意可得:
≤
解之得:≥12
设购买这些喷雾器的总费用为W元,则有:
∵
∴W随的增大而增大
∴当时,W取得最小值,及最省钱.
(个)
答:最省钱的购买方案为:购买A型喷雾器12个,B型喷雾器48个.
科目:初中数学 来源: 题型:
【题目】某中学开展普通话演讲比赛,九(1)、(2)两个班根据初赛成绩各选出5名选手参加复赛,10名选手的复赛成绩如图所示:
(1)根据如图补充完成下面的成绩统计分析表:
平均数 | 中位数 | 众数 | 方差 | 合格率 | 优秀率 | |
九(1)班 | 85 |
| 85 |
|
| 60% |
九(2)班 | 85 | 80 |
| 160 | 100% |
|
(2)九(1)班学生说他们的复赛成绩好于九(2)班,结合图表,请你给出三条支持九(1)班学生观点的理由.
(3)如果从复赛成绩100分的3名选手中任选2人参加学校决赛,求选中的两位选手恰好一位来自于九(1)班,另一位来自于九(2)班的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线经过点A(,0)和点B(1,),与x轴的另一个交点为C.
(1)求抛物线的函数表达式;
(2)点D在对称轴的右侧,x轴上方的抛物线上,且∠BDA=∠DAC,求点D的坐标;
(3)在(2)的条件下,连接BD,交抛物线对称轴于点E,连接AE.
①判断四边形OAEB的形状,并说明理由;
②点F是OB的中点,点M是直线BD的一个动点,且点M与点B不重合,当∠BMF=∠MFO时,请直接写出线段BM的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,若抛物线与轴相交于,两点,与轴相交于点,直线经过点,.
(1)求抛物线的解析式;
(2)点是直线下方抛物线上一动点,过点作轴于点,交于点,连接.
①线段是否有最大值?如果有,求出最大值;如果没有,请说明理由;
②在点运动的过程中,是否存在点,恰好使是以为腰的等腰三角形?如果存在,请直接写出点的坐标;如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=x2+mx+4m与x轴交于点A(,0)和点B(,0),与y轴交于点C,,若对称轴在y轴的右侧.
(1)求抛物线的解析式
(2)在抛物线的对称轴上取一点M,使|MC-MB|的值最大;
(3)点Q是抛物线上任意一点,过点Q作PQ⊥x轴交直线BC于点P,连接CQ,当△CPQ是等腰三角形时,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场第一次用11000元购进某款拼装机器人进行销售,很快销售一空,商家又用24000元第二次购进同款机器人,所购进数量是第一次的2倍,但单价贵了10元.
(1)求该商家第一次购进机器人多少个?
(2)若在这两次机器人的销售中,该商场全部售完,而且售价都是130元,问该商场总共获利多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连结AC,过上一点E作EG∥AC交CD的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE.
(1)求证:△ECF∽△GCE;
(2)求证:EG是⊙O的切线;
(3)延长AB交GE的延长线于点M,若tanG=,AH=,求EM的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:
售价x(元/千克) | 50 | 60 | 70 |
销售量y(千克) | 100 | 80 | 60 |
(1)求y与x之间的函数表达式;
(2)设商品每天的总利润为W(元),则当售价x定为多少元时,厂商每天能获得最大利润?最大利润是多少?
(3)如果超市要获得每天不低于1350元的利润,且符合超市自己的规定,那么该商品每千克售价的取值范围是多少?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在平面直角坐标系xOy中,Rt△OAB的直角顶点B在x轴的正半轴上,点A在第一象限,反比例函数y=(x>0)的图象经过OA的中点C.交AB于点D,连结CD.若△ACD的面积是2,则k的值是_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com