【题目】如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数是( )
A. 70° B. 35° C. 40° D. 90°
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,AC=CB,点E,F分别是AC,BC上的点,△CEF的外接圆交AB于点Q,D.
(1)如图1,若点D为AB的中点,求证:∠DEF=∠B;
(2)在(1)问的条件下:
①如图2,连结CD,交EF于H,AC=4,若△EHD为等腰三角形,求CF的长度.
②如图2,△AED与△ECF的面积之比是3:4,且ED=3,求△CED与△ECF的面积之比(直接写出答案).
(3)如图3,连接CQ,CD,若AE+BF=EF,求证:∠QCD=45°.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直角坐标系中,直线与反比例函数的图象交于A,B两点,已知A点的纵坐标是2.
(1)求反比例函数的解析式.
(2)将直线沿x轴向右平移6个单位后,与反比例函数在第二象限内交于点C.动点P在y轴正半轴上运动,当线段PA与线段PC之差达到最大时,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=-x2+bx+c与x轴交于A(1,0),B(-3,0)两点,与y轴交于点C.
(1)求该抛物线的解析式;
(2)设该抛物线的顶点为D,求出△BCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.
(1)判断△ABC的形状,并证明你的结论;
(2)若BC的长为6,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数图象的顶点在原点,对称轴为轴.一次函数的图象与二次函数的图象交于两点(在的左侧),且点坐标为.平行于轴的直线过点.
(1)求一次函数与二次函数的解析式;
(2)判断以线段AB为直径的圆与直线的位置关系,并给出证明;
(3)把二次函数的图象向右平移 2 个单位,再向下平移 t 个单位(t>0),二次函数的图象与x 轴交于 M,N 两点,一次函数图象交y 轴于 F 点.当 t 为何值时,过 F,M,N 三点的圆的面积最小?最小面积是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以O为位似中心,将五边形ABCDE放大得到五边形A′B′C′D′E′,已知OA=10 cm,OA′=30 cm,若S五边形A′B′C′D′E′=27 cm2,则S五边形ABCDE=__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在△ABC中,点D在边AC上,BD的垂直平分线交CA的延长线于点E,交BD于点F,联结BE,ED2=EAEC.
(1)求证:∠EBA=∠C;
(2)如果BD=CD,求证:AB2=ADAC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线OBCDA表示轿车离甲地距离y(千米)与时间x(小时)之间的函数关系.请根据图象解答下列问题:
(1)当轿车刚到乙地时,此时货车距离乙地 千米;
(2)当轿车与货车相遇时,求此时x的值;
(3)在两车行驶过程中,当轿车与货车相距20千米时,求x的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com