精英家教网 > 初中数学 > 题目详情

【题目】小雪和小松分别从家和图书馆出发,沿同一条笔直的马路相向而行.小雪开始跑步,中途在某地改为步行,且步行的速度为跑步速度的一半,小雪先出发5分钟后,小松才骑自行车匀速回家.小雪到达图书馆恰好用了35分钟.两人之间的距离ym)与小雪离开出发地的时间xmin)之间的函数图象如图所示,则当小松刚到家时,小雪离图书馆的距离为____米.

【答案】1500.

【解析】

分析图象:点A表示出发前两人相距4500米,即家和图书馆相距4500米;线段AB表示小雪已跑步出发,两人相距距离逐渐减小,到5分钟时相距3500米,即小雪5分钟走了1000米,可求小雪跑步的速度;线段BC表示小松5分钟后开始出发;点C表示两人相距1000米时,小雪改为步行,可设小雪跑步a分钟,则后面(35a)分钟步行,列方程可求出a,然后用45001000再减去小雪走的路程可求出此时小松骑车走的路程,即求出小松的速度;点D表示两人相遇;线段DE表示两人相遇后继续往前走,点E表示小松到达家,可用路程除以小松的速度得到此时为第几分钟;线段EF表示小雪继续往图书馆走;点F表示35分钟时小雪到达图书馆.

由图象可得:家和图书馆相距4500米,小雪的跑步速度为:(45003500÷5200(米/分钟),

∴小雪步行的速度为:200×100(米/分钟),

设小雪在第a分钟时改为步行,列方程得:

200a+10035a)=4500

解得:a10

∴小松骑车速度为:(4500200×101000÷105)=300(米/分钟)

∴小松到家时的时间为第:4500÷300+520(分钟)

此时小雪离图书馆还有15分钟路程,100×151500(米)

故答案为1500.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】己知,在矩形中,点的中点,点上一点,连接,若,则线段的长为_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线yx2+bx+cx轴于AB两点,其中点A坐标为(10),与y轴交于点C0,﹣3).

1)求抛物线的函数表达式;

2)如图①,连接AC,点P在抛物线上,且满足∠PAB2ACO.求点P的坐标;

3)如图②,点Qx轴下方抛物线上任意一点,点D是抛物线对称轴与x轴的交点,直线AQBQ分别交抛物线的对称轴于点MN.请问DM+DN是否为定值?如果是,请求出这个定值;如果不是,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是抛物线y=ax2+bx+ca≠0)的部分图象,其顶点坐标为(1n),且与x轴的一个交点在点(30)和(40)之间.则下列结论:①ab+c0;②3a+b=0;③b2=4acn);④一元二次方程ax2+bx+c=n1有两个不相等的实数根.其中正确结论的是______________(只填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:关于x的方程

(1)求证:m取任何值时,方程总有实根.

(2)若二次函数的图像关于y轴对称.

a、求二次函数的解析式

b、已知一次函数,证明:在实数范围内,对于同一x值,这两个函数所对应的函数值均成立.

(3)在(2)的条件下,若二次函数的象经过(-5,0),且在实数范围内,对于x的同一个值,这三个函数所对应的函数值均成立,求二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】春节期间,根据习俗每家每户都会在门口挂灯笼和对联,某商店看准了商机,购进了一批红灯笼和对联进行销售,已知每幅对联的进价比每个红灯笼的进价少10元,且用480元购进对联的幅数是用同样金额购进红灯笼个数的6倍.

1)求每幅对联和每个红灯笼的进价分别是多少?

2)由于销售火爆,第一批销售完了以后,该商店用相同的价格再购进300幅对联和200个红灯笼,已知对联售价为6元一幅,红灯笼售价为24元一个,销售一段时间后,对联卖出了总数的,红灯笼售出了总数的,为了清仓,该店老板对剩下的对联和红灯笼以相同的折扣数进行打折销售,并很快全部售出,求商店最低打几折可以使得这批货的总利润率不低于90%

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图,抛物线轴于两点(点在点的左侧),交轴于点.已知

1)求抛物线的解析式;

2)已知直线,若直线与抛物线有且只有一个交点的面积;

3)在(2)的条件下,抛物线上是否存在点使若存在,请直接写出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着近几年城市建设的快速发展.某市对花木的需求量逐年提高,某园林专业户计划投资15万元种植花卉和树木.根据市场调查与预测,种植树木的利润y1(万元)与投资量x(万元)成正比例关系,如图所示;种植花卉的利润y2(万元)与投资量x(万元)的函数关系如图所示(其中OA是抛物线的一部分,A为抛物线的顶点;AB//x轴)。

(1)求出y1y2关于投资量x的函数关系式

(2)求此专业户种植花卉和树木获取的总利润W(万元)关于投入种植花卉的资金t(万元)之间的函数关系式:

(3)此专业户投入种植花卉的资金为多少万元时,才能使获取的利润最大,最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司计划购买两种型号的机器人搬运材料,已知型机器人比型机器人每小时多搬运材料,且型机器人搬运的材料所用的时间与型机器人搬运材料所用的时间相同.

1)求两种型号的机器人每小时分别搬运多少材料?

2)该公司计划采购两种型号的机器人共台,要求每小时搬运的材料不得少于,则至少购进型机器人多少台?

查看答案和解析>>

同步练习册答案