精英家教网 > 初中数学 > 题目详情

【题目】春节期间,根据习俗每家每户都会在门口挂灯笼和对联,某商店看准了商机,购进了一批红灯笼和对联进行销售,已知每幅对联的进价比每个红灯笼的进价少10元,且用480元购进对联的幅数是用同样金额购进红灯笼个数的6倍.

1)求每幅对联和每个红灯笼的进价分别是多少?

2)由于销售火爆,第一批销售完了以后,该商店用相同的价格再购进300幅对联和200个红灯笼,已知对联售价为6元一幅,红灯笼售价为24元一个,销售一段时间后,对联卖出了总数的,红灯笼售出了总数的,为了清仓,该店老板对剩下的对联和红灯笼以相同的折扣数进行打折销售,并很快全部售出,求商店最低打几折可以使得这批货的总利润率不低于90%

【答案】1)每幅对联的进价为2元,每个红灯笼的进价为12元;(2)商店最低打5折可以使得这批货的总利润率不低于90%

【解析】

1)设每幅对联的进价为x元,则每个红灯笼的进价为(x+10)元,根据数量=总价÷单价结合用480元购进对联的幅数是用同样金额购进红灯笼个数的6倍,即可得出关于x的分式方程,解之经检验后即可得出结论;

2)设剩下的对联和红灯笼打y折销售,根据总利润=销售收入﹣成本结合总利润率不低于90%,即可得出关于y的一元一次不等式,解之取其最小值即可得出结论.

1)设每幅对联的进价为x元,则每个红灯笼的进价为(x+10)元,

依题意,得:

解得:x2

经检验,x2是原分式方程的解,且符合题意,

x+1012

答:每幅对联的进价为2元,每个红灯笼的进价为12元.

2)设剩下的对联和红灯笼打y折销售,

依题意,得:300××6+200××24+300×1×6×+200×1×24×300×2200×12≥300×2+200×12×90%

解得:y≥5

答:商店最低打5折可以使得这批货的总利润率不低于90%

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知,在中,弦,连接

1)如图1,求证:

2)如图2,在线段上取点,连接并延长交于点于点,连接,求的正切值;

3)如图3,在(2)的条件下,于点,求线段的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知AD是△ABC的中线P是线段AD上的一点(不与点AD重合),连接PBPCEFGH分别是ABACPBPC的中点,ADEF交于点M

1)如图1,当ABAC时,求证:四边形EGHF是矩形;

2)如图2,当点P与点M重合时,在不添加任何辅助线的条件下,写出所有与△BPE面积相等的三角形(不包括△BPE本身).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,以AC为直径的⊙OBC于点D,交AB于点E,过点DDF⊥AB,垂足为F,连接DE

1)求证:直线DF⊙O相切;

2)若AE=7BC=6,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小雪和小松分别从家和图书馆出发,沿同一条笔直的马路相向而行.小雪开始跑步,中途在某地改为步行,且步行的速度为跑步速度的一半,小雪先出发5分钟后,小松才骑自行车匀速回家.小雪到达图书馆恰好用了35分钟.两人之间的距离ym)与小雪离开出发地的时间xmin)之间的函数图象如图所示,则当小松刚到家时,小雪离图书馆的距离为____米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明对函数的图象和性质进行了探究.已知当自变量的值为时,函数值都为;当自变量的值为时,函数值都为.探究过程如下,请补充完整.

1)这个函数的表达式为

2)在给出的平面直角坐标系中,画出这个函数的图象并写出这个函数的--条性质:

3)进一步探究函数图象并解决问题:

①直线与函数有三个交点,则

②已知函数的图象如图所示,结合你所画的函数图象,写出不等式的解集:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在菱形ABCD 中,点EOF分别是边ABACAD的中点,连接CECFOEOF

1)求证:△BCE≌△DCF

2)当ABBC满足什么条件时,四边形AEOF正方形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,PA切⊙O于点APC过点O且与⊙O交于BC两点,若PA=6cmPB=2cm,则△PAC的面积是_____cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】RtABC中,∠B90°,AB8CB5,动点MC点开始沿CB运动,动点NB点开始沿BA运动,同时出发,两点均以1个单位/秒的速度匀速运动(当M运动到B点即同时停止),运动时间为t秒.

1AN   CM   .(用含t的代数式表示)

2)连接CNAM交于点P

t为何值时,△CPM和△APN的面积相等?请说明理由.

t3时,试求∠APN的度数.

查看答案和解析>>

同步练习册答案