精英家教网 > 初中数学 > 题目详情

【题目】如图,一次函数轴于点,交轴于点,且与反比例函数的图象交于两点.

(1)分别求出一次函数与反比例函数的表达式;

(2)过点轴于点,过点轴于点,求四边形的面积

(3)当时,的取值范围是________.

【答案】(1) (2)8 (3)

【解析】

(1)利用待定系数法即可解决问题;

(2)连接CD,根据计算即可解决问题;

(3)观察图象,写出一次函数的图象在反比例函数的图象下方的自变量的取值范围即可.

(1)将点代入,得∴反比例函数的表达式为

时,,则点

将点代入

得:,解得

∴一次函数表达式为

(2)连接CD.由题意F(0,3),D(0,1),C(-3,0),

.

(3)观察图象可知,当kx+b<时,x的取值范围是x<-30<x<2.

故答案为x<-30<x<2.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,矩形OADB的顶点A,B的坐标分别为A(﹣6,0),B(0,4).过点C(﹣6,1)的双曲线y=(k≠0)与矩形OADB的边BD交于点E.

(1)填空:OA=  ,k=   ,点E的坐标为   

(2)当1≤t≤6时,经过点M(t﹣1,﹣t2+5t﹣)与点N(﹣t﹣3,﹣t2+3t﹣)的直线交y轴于点F,点P是过M,N两点的抛物线y=﹣x2+bx+c的顶点.

①当点P在双曲线y=上时,求证:直线MN与双曲线y=没有公共点;

②当抛物线y=﹣x2+bx+c与矩形OADB有且只有三个公共点,求t的值;

③当点F和点P随着t的变化同时向上运动时,求t的取值范围,并求在运动过程中直线MN在四边形OAEB中扫过的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知ABC为等边三角形,P是直线AC上一点,ADBPD,以AD为边作等边ADE(D,E在直线AC异侧).

(1)如图1,若点P在边AC上,连CD,且∠BDC=150°,则= ;(直接写结果)

(2)如图2,若点PAC延长线上,DEBCF求证:BF=CF;

(3)在图2中,若∠PBC=15°,AB=,请直接写出CP的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC 中,∠C90°AB10cmBC6cm,若动点 P 从点 C开始,按 C→A→B→C 的路径运动,且速度为每秒 1cm,设出发的时间为 t 秒.

1)出发 2 秒后,求△ABP 的周长.

2)当 t 为几秒时,BP 平分∠ABC

3)另有一点 Q,从点 C 开始,按 C→B→A→C 的路径运动,且速度为每秒 2cm,若 PQ 两点同时出发,当 PQ 中有一点到达终点时,另一点也停止运动.当 t 为何值时,直 线 PQ △ABC 的周长分成相等的两部分?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的口袋中装有4个完全相同的小球,分别标有数字1234,另外有一个可以自由旋转的圆盘,被分成面积相等的3个扇形区域,分别标有数字123(如图所示).

1)从口袋中摸出一个小球,所摸球上的数字大于2的概率为

2)小龙和小东想通过游戏来决定谁代表学校参加歌咏比赛,游戏规则为:一人从口袋中摸出一个小球,另一人转动圆盘,如果所摸球上的数字与圆盘上转出数字之和小于5,那么小龙去;否则小东去.你认为游戏公平吗?请用树状图或列表法说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A是反比例函数在第二象限内图象上一点,点B是反比例函数在第一象限内图象上一点,直线ABy轴交于点C,且AC=BC,连接OA、OB,则AOB的面积是(  )

A. 2 B. 2.5 C. 3 D. 3.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=k1x(x≥0)与双曲线y=(x>0)相交于点P(2,4).已知点A(4,0),B(0,3),连接AB,将RtAOB沿OP方向平移,使点O移动到点P,得到A'PB'.过点A'A'Cy轴交双曲线于点C.

(1)求k1k2的值;

(2)求直线PC的表达式;

(3)直接写出线段AB扫过的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数yax2+bx+ca0)的图象的对称轴为直线x=﹣1,下列结论正确的有_____(填序号).

若图象过点(﹣3y1)、(2y2),则y1y2

ac0

③2ab0

b24ac0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形OABC是平行四边形,以O为圆心,OA为半径的圆交AB于点D,延长AO交⊙O于点E,连接CD、CE,若CE是⊙O的切线.

(1)求证:CD是⊙O的切线;

(2)若⊙O的半径为4,OC=7,求BD的长.

查看答案和解析>>

同步练习册答案