【题目】如图,在中,已知,,是的高,,,直线,动点从点开始沿射线方向以每秒厘米的速度运动,动点也同时从点开始在直线上以每秒厘米的速度向远离点的方向运动,连接、,设运动时间为秒.
(1)请直接写出、的长度(用含有的代数式表示):______,______;
(2)当为多少时,的面积为?
(3)请利用备用图探究,当___________秒时,.
【答案】(1),;(2)当为或时,的面积为;(3).
【解析】
(1)根据“”即可得;
(2)根据可求出BD的长,因为要求t则需要求出CD的长,由点D的位置可知,需分点D在点B右侧和点D在点B左侧两种情况,根据线段的和与差分别讨论即可;
(3)先假设,则有,同题(2)分两种情况讨论解出t的值,再检验两种情况下的t值,能否使得,把不符合的舍去即可.
(1)由“”得:
故答案为:;
(2),
,为求CD的长分以下两种情况:
若在点右侧,,则
若在点左侧,,则
综上所述:当为或时,的面积为;
(3)如果,则有
同题(2)分两种情况:
①若在点右侧,则
由,即可得:
检验:
因此,由定理可得
②若在点左侧,则
由,即可得:
检验:
因此,推不出
综上,秒时,.
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣4,0),B(2,0),与y轴交于点C.请解答下列问题:
(1)求抛物线的函数解析式并直接写出顶点M坐标;
(2)连接AM,N是AM的中点,连接BN,求线段BN长.
注:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(﹣,).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(观察)
51×49=()2﹣()2
102×98=()2﹣()2
2001×1999=()2﹣()2
(发现)根据阅读回答问题
(1)请根据上面式子的规律填空:
998×1002= 2﹣ 2
(2)在上述乘法运算中,设第一个因数为m,第二个因数为n,请用有m、n的符号语言写出你所发现的规律,并证明.
(应用)请运用(发现)中总结的规律计算:59.8×60.2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=2x2﹣4x﹣6.
(1)求这个二次函数图象的顶点坐标及对称轴;
(2)指出该图象可以看作抛物线y=2x2通过怎样平移得到?
(3)在给定的坐标系内画出该函数的图象,并根据图象回答:当x取多少时,y随x增大而减小;当x取多少时,y<0.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一元二次方程x2+2x﹣3=0的两根x1,x2(x1<x2)是抛物线y=ax2+bx+c与x轴的两个交点C,B的横坐标,且此抛物线过点A(3,6).
(1)求此二次函数的解析式;
(2)设此抛物线的顶点为P,对称轴与线段AC相交于点G,则P点坐标为 ,G点坐标为 ;
(3)在x轴上有一动点M,当MG+MA取得最小值时,求点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等边△ABC中,D、E分别是BC、AC上的动点且BD=CE,连接AD与BE相交于点F,连接CF,下列结论:①△ABD≌△BCE;②∠AFB=120°;③若BD=CD,则FA=FB=FC;④∠AFC=90°,则AF=3BF,其中正确的结论共有( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】平面直角坐标系xOy中,横坐标为a的点A在反比例函数y1═(x>0)的图象上,点A′与点A关于点O对称,一次函数y2=mx+n的图象经过点A′.
(1)设a=2,点B(4,2)在函数y1、y2的图象上.
①分别求函数y1、y2的表达式;
②直接写出使y1>y2>0成立的x的范围;
(2)如图①,设函数y1、y2的图象相交于点B,点B的横坐标为3a,△AA'B的面积为16,求k的值;
(3)设m=,如图②,过点A作AD⊥x轴,与函数y2的图象相交于点D,以AD为一边向右侧作正方形ADEF,试说明函数y2的图象与线段EF的交点P一定在函数y1的图象上.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在学校组织的“文明出行”知识竞赛中,8(1)和8(2)班参赛人数相同,成绩分为A、B、C三个等级,其中相应等级的得分依次记为A级100分、B级90分、C级80分,达到B级以上(含B级)为优秀,其中8(2)班有2人达到A级,将两个班的成绩整理并绘制成如下的统计图,请解答下列问题:
(1)求各班参赛人数,并补全条形统计图;
(2)此次竞赛中8(2)班成绩为C级的人数为_______人;
(3)小明同学根据以上信息制作了如下统计表:
平均数(分) | 中位数(分) | 方差 | |
8(1)班 | m | 90 | n |
8(2)班 | 91 | 90 | 29 |
请分别求出m和n的值,并从优秀率和稳定性方面比较两个班的成绩;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com