【题目】如图,已知一次函数的图象分别于x轴、y轴交于A、B两点,与反比例函数的图象交于点P和点,连接OP、OQ.
求m和b的值;求的面积.
科目:初中数学 来源: 题型:
【题目】如图①,二次函数的图像与轴交于、两点(点在的左侧),顶点为,连接并延长交轴于点,若.
(1)求二次函数的表达式;
(2)在轴上方有一点,,且,连接并延长交抛物线于点,求点的坐标;
(3)如图②,折叠△,使点落在线段上的点处,折痕为.若△ 有一条边与轴垂直,直接写出此时点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形ABCD中,,,点E在射线DA上,连接BE,将线段BE绕点E旋转后,点B恰好落在射线DB上此时点B的对应点为点,则线段DF的长为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(6分)如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).
(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;
(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2;
(3)求出(2)中C点旋转到C2点所经过的路径长(记过保留根号和π).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读以下短文,然后解决下列问题:
如果一个三角形和一个矩形满足条件:三角形的一边与矩形的一边重合,且三角形的这边所对的顶点在矩形这边的对边上,则称这样的矩形为三角形的“友好矩形”. 如图①所示,矩形ABEF即为△ABC的“友好矩形”. 显然,当△ABC是钝角三角形时,其“友好矩形”只有一个 .
(1) 仿照以上叙述,说明什么是一个三角形的“友好平行四边形”;
(2) 如图②,若△ABC为直角三角形,且∠C=90°,在图②中画出△ABC的所有“友好矩形”,并比较这些矩形面积的大小;
(3) 若△ABC是锐角三角形,且BC>AC>AB,在图③中画出△ABC的所有“友好矩形”,指出其中周长最小的矩形并加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是二次函数图象的一部分,其对称轴是,且过点,下列说法:;;;若,是抛物线上两点,则,其中正确的有
A. 1个
B. 2个
C. 3个
D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校要求200名学生进行社会调查,每人必须完成份报告,调查结束后随机抽查了20名学生每人完成报告的份数,并分为四类,A:3份;B:4份;C:5份;D:6份,将各类的人数绘制成扇形图如图和尚未完整的条形图如图,回答下列问题:
请将条形统计图2补充完整;
写出这20名学生每天完成报告份数的众数______份和中位数______份;
在求出20名学生每人完成报告份数的平均数时,小明是这样分析的:
第一步:求平均数的公式是;
第二步:在该问题中,,,,,;
第三步:(份);
小明的分析对不对?如果对,请说明理由,如果不对,请求出正确结果.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程x2+(m+3)x+m+1=0.
(1)求证:无论m取何值,原方程总有两个不相等的实数根;
(2)若x1,x2是原方程的两根,且|x1-x2|=2,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A、B、C在半径为2的圆O上,且∠BAC=60°,作OM⊥AB于点M,ON⊥AC于点N,连接MN,则MN的长为( )
A. 1B. C. 2D. 2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com