精英家教网 > 初中数学 > 题目详情

【题目】小王购买了一套房子,他准备将地面都铺上地砖,地面结构如图所示,请根据图中的数据(单位:米),解答下列问题:

1)用含xy的代数式表示地面总面积为   平方米;

2)若x5y1,铺地砖每平方米的平均费用为100元,则铺地砖的总费用为   元;

3)已知房屋的高度为3米,现需要在客厅和卧室的墙壁上贴壁纸,那么用含x的代数式表示至少需要   平方米的壁纸;如果所粘壁纸的价格是100/平方米,那么用含x的代数式表示购买该壁纸至少需要   元.(计算时不扣除门,窗所占的面积)

【答案】1)(6x+2y+18);(25000;(3)(78+6x),(7800+600x).

【解析】

1)根据总面积等于四个部分矩形的面积之和列式整理即可得解;

2)把x5y1代入求得答案即可;

3)先根据长方形的面积公式算出需贴壁纸的面积,然后用壁纸的价格乘以面积即可得出所需费用.

解:(1)地面总面积为:6x+2×(63)+2y+3×(2+2)

6x+6+2y+12

(6x+2y+18) 平方米;

2)当x5y1,铺1平方米地砖的平均费用为100元时,

总费用=(6×5+2×1+18)×10050×1005000元,

答:铺地砖的总费用为5000元;

3)根据题意得:3×3×2+4×3×2+6×3×2+3x×2=(78+6x) 平方米,

(78+6x) ×100=(7800+600x)元,

则在客厅和卧室的墙壁上贴壁纸,那么至少需要(78+6x)平方米的壁纸,至少需要(7800+600x)元,

故答案为:(1(6x+2y+18);(25000;(3(78+6x)(7800+600x)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】[问题背景]三边的长分别为,求这个三角形的面积.

小辉同学在解这道题时,先建立一个正方形网格(每个小正方形的边长为),再在网格中作出格点(三个顶点都在小正方形的顶点处),如图1所示,这样不需要作的高,借用网格就能计算出的面积为_

[思维拓展]我们把上述求面积的方法叫做构图法,若三边的长分别为,请利用图2的正方形网格(每个小正方形的边长为)画出相应的,并求出它的面积:

[探索创新]三边的长分别为(其中),请利用构图法求出这个三角形的面积(画出图形并计算面积)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:乙车的速度是120km/h;②m=160;③H的坐标是(7,80);④n=7.5.

其中说法正确的是(  )

A. ①②③ B. ①②④ C. ①③④ D. ①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校随机抽取部分学生,就“学习习惯”进行调查,将“对自己做错的题目进行整理、分析、改正” (选项为:很少、有时、常常、总是)的调查数据进行了整理,绘制成部分统计图如下:

请根据图中信息,解答下列问题:

(1)该调查的样本容量为_______________ %,________%“很少”对应扇形的圆心角为_____________

(2)请补全条形统计图;

(3)若该校共有3500名学生,请你估计其中“总是”对错题进行整理、分析、改正的学生有多少名?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与探究

如图,抛物线y=﹣x2+2x+6与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,其对称轴与抛物线交于点D.与x轴交于点E.

(1)求点A,B,D的坐标;

(2)点G为抛物线对称轴上的一个动点,从点D出发,沿直线DE以每秒2个单位长度的速度运动,过点C作x轴的平行线交抛物线于M,N两点(点M在点N的左边).

设点G的运动时间为ts.

①当t为何值时,以点M,N,B,E为顶点的四边形是平行四边形;

②连接BM,在点G运动的过程中,是否存在点M.使得∠MBD=∠EDB,若存在,求出点M的坐标;若不存在,请说明理由;

(3)点Q为坐标平面内一点,以线段MN为对角线作萎形MENQ,当菱形MENQ为正方形时,请直接写出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:AOB三点在同一直线上,OEOD分别平分∠AOC、∠BOC

1)求∠EOD的度数;

2)若∠AOE50°,求∠BOC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列一段文字,然后回答下列问题.

已知在平面内有两点,其两点间的距离,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可化简为.

1)已知,试求AB两点间的距离______.

已知MN在平行于y轴的直线上,点M的纵坐标为4,点N的纵坐标为-1,试求MN两点的距离为______

2)已知一个三角形各顶点坐标为,你能判定此三角形的形状吗?说明理由.

3)在(2)的条件下,平面直角坐标系中,在x轴上找一点P,使的长度最短,求出点P的坐标及的最短长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠A=90°,点D、E分别在AC、BC上,且CD·BC=AC·CE,以E为圆心,DE长为半径作圆,⊙E经过点B,与AB、BC分别交于点F、G.

(1)求证:AC是⊙E的切线;

(2)若AF=4,CG=5,求⊙E的半径;

(3)若Rt△ABC的内切圆圆心为I,求⊙I的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场销售一批衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利, 尽快减少库存,商场决定采取适当的降价措施.假设在一定范围内,衬衫的单价每降低1元,商场平均每天可多售出2件.设衬衫的单价降了x元:

(1)该商场降价后每件盈利___________元,每天可售出________件;

(2)如果商场通过销售这批衬衫每天盈利1200元,那么衬衫的单价降了多少元?

查看答案和解析>>

同步练习册答案