【题目】如图1,在平面直角坐标系中,O是坐标原点.点A在x轴的正半轴上,点A的坐标为(10,0).一条抛物线经过O,A,B三点,直线AB的表达式为,且与抛物线的对称轴交于点Q.
(1)求抛物线的表达式;
(2)如图2,在A,B两点之间的抛物线上有一动点P,连结AP,BP,设点P的横坐标为m,△ABP的面积S,求出面积S取得最大值时点P的坐标;
(3)如图3,将△OAB沿射线BA方向平移得到△DEF,在平移过程中,以A,D,Q为顶点的三角形能否成为等腰三角形?如果能,请直接写出此时点E的坐标(点O除外);如果不能,请说明理由.
【答案】(1);(2)当S取得最大值16时,点P的坐标为(6,6);(3)以A,D,Q为顶点的三角形能成为等腰三角形,点E坐标为:E1(21,),E2(15,),E3(),E4(16,﹣3).
【解析】
(1)将点A的坐标(10,0).O(0,0)代入抛物线,解出b,c,再代回,即可得抛物线的解析式;
(2)先将直线与抛物线解析式联立,解出点B坐标,再设出点P和点G坐标,用相关点的横纵坐标表示线段长河高,从而可得面积的表达式,再从函数角度即可得解;
(3)利用勾股定理分别表示出AD2,AQ2,QD2,再分AD=AQ,AD=QD,AQ=QD,分别来求解,从而得点D坐标,再将其横坐标加10,纵坐标不变即可得点E的坐标.
解:(1)∵抛物线经过O,A,B三点,点A的坐标为(10,0).O(0,0),
∴
∴,
∴抛物线的表达式为:y=﹣x2+x.
(2)由得﹣x2+x=,
∴x=2或x=10,
∴点B(2,4).
如图2,作PC⊥x轴于C点,交AB于点G,
∵动点P在抛物线上,直线AB的表达式为,
∴设P(m,﹣m2+m),G(m,),
∴PG=﹣m2+3m﹣5,
∴S=PG(xA﹣xG)+PG(xG﹣xB)=(﹣m2+3m﹣5)(10﹣2)=﹣m2+12m﹣20=﹣(m﹣6)2+16,
∴当m=6时,S最大=16,
∴P(6,6)
答:当S取得最大值时点P的坐标为(6,6).
(3)∵抛物线的对称轴为x=5,点Q在直线上,
∴Q点坐标为(5,),D点在过O点且平行于AB的直线y=上,设D(a,),
∴AD2=(10﹣a)2+a2,AQ2=25+=,QD2=(a﹣5)2+
①当AD=AQ时,(10﹣a)2+a2=,解得a1=11,a2=5,
∴D1(11,),D2(5,﹣);
∴E1(21,),E2(15,-);
②当AD=QD时,(10﹣a)2+a2=(a﹣5)2+,解得a=,
∴D3(,),E3(,);
③当AQ=QD时,=(a﹣5)2+,解得a=6,
∴D4(6,﹣3),E4(16,﹣3)
综上所述,以A,D,Q为顶点的三角形能成为等腰三角形,点E坐标为:E1(21,),E2(15,),E3(,),E4(16,﹣3).
科目:初中数学 来源: 题型:
【题目】我市最近开通了“1号水路”观光游览专线,某中学数学活动小组带上高度为1.6m的测角仪,对其标志性建筑AO进行测量高度的综合实践活动,如图,在BC处测得直立于地面的AO顶点A的仰角为30°,然后前进20m至DE处,测得顶点A的仰角为75°.
(1)求AE的长(结果保留根号);
(2)求高度AO(精确到个位,参考数据:)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.
(1)求证:CD2=CACB;
(2)求证:CD是⊙O的切线;
(3)过点B作⊙O的切线交CD的延长线于点E,若BC=12,tan∠CDA=,求BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在推进嘉兴市城乡生活垃圾分类的行动中,某社区为了了解居民掌握垃圾分类知识的 情况进行调查.其中A、B 两小区分别有 500 名居民参加了测试,社区从中各随机 抽取50 名居民成绩进行整理得到部分信息:
(信息一)A 小区 50 名居民成绩的频数直方图如下(每一组含前一个边界值,不含后一个边界值):
(信息二)上图中,从左往右第四组的成绩如下
(信息三)A、B 两小区各 50 名居民成绩的平均数、中位数、众数、优秀率(80 分及以上为优秀)、方差等数据如下(部分空缺):
根据以上信息,回答下列问题:
(1)求A 小区 50 名居民成绩的中位数.
(2)请估计A 小区 500 名居民成绩能超过平均数的人数.
(3)请尽量从多个角度,选择合适的统计量分析 A,B 两小区参加测试的居民掌握垃圾分类知识的情况.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某景区的两个景点A、B处于同一水平地面上、一架无人机在空中沿MN方向水平飞行进行航拍作业,MN与AB在同一铅直平面内,当无人机飞行至C处时、测得景点A的俯角为45°,景点B的俯角为30°,此时C到地面的距离CD为100米,则两景点A、B间的距离为__米(结果保留根号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB:BC=3:5,点E是对角线BD上一动点(不与点B,D重合),将矩形沿过点E的直线MN折叠,使得点A,B的对应点G,F分别在直线AD与BC上,当△DEF为直角三角形时,CN:BN的值为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=x2+bx+c的图象经过坐标原点O和点A(7,0),直线AB交y轴于点B(0,﹣7),动点C(x,y)在直线AB上,且1<x<7,过点C作x轴的垂线交抛物线于点D,则CD的最值情况是( )
A.有最小值9B.有最大值9C.有最小值8D.有最大值8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与轴,轴分别交于,两点,边长为2的正方形的边,分别在轴,轴上,点在第一象限,正方形绕点逆时针旋转,的对应边恰好落在直线上,则的值为( )
A. B. C. 5D. 6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,以C(x0,y0)为圆心半径为r的圆的标准方程是(x﹣x0)2+(y﹣y0)2=r2.例如,在平面直角坐标系中,⊙C的圆心C(2,3),点M(3,5)是圆上一点,如图,过点C、点M分别作x轴、y轴的平行线,交于点H,在Rt△MCH中,由勾股定理可得:r2=MC2=CH2+MH2=1+4=5,则圆C的标准方程是(x﹣2)2+(y﹣3)2=5.那么以点(﹣3,4)为圆心,过点(﹣2,﹣1)的圆的标准方程是_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com