精英家教网 > 初中数学 > 题目详情

【题目】如图,已知点A(﹣4,a),B(﹣1,2)是一次函数y1=kx+b与反比例函数m0图象的两个交点,ACx轴于C.

(1)求一次函数和反比例函数的解析式;

(2)若P是直线AB上的一点,连接PC,若PCA的面积等于,求点P的坐标.

【答案】1y=y=x+;(2)点P的坐标为(﹣2 )或(﹣6).

【解析】试题分析:(1)把点B的坐标代入y= 即可求出m的值,把点A的坐标代入反比例函数的解析式就可求出a,然后把A、B的坐标代入一次函数的解析式就可解决问题;
(2)设点P的横坐标为xP,根据点A的坐标可得到AC的长,然后根据条件即可求出xP,然后将xP代入一次函数的解析式就可求出点P的坐标.

试题解析:

1)把B12)代入y=

m=﹣1×2=﹣2,

∴反比例函数解析式为y=

A4a)代入y=,得a=

A4 ),B12)代入y=kx+b,得

解得:

∴一次函数解析式为:y=x+

(2)设点P的横坐标为xP

ACx轴,点A4 ),

AC=

∵△PCA的面积等于

××|xP4|=

解得xP=﹣2或﹣6,

P是直线AB上的一点,

yP=×2+=,或yP=×6+=

∴点P的坐标为(﹣2 )或(﹣6).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在中,,以为圆心,任意长为半径画弧分别交于点,再分别以为圆心,大于的长为半径画弧,两弧交于点,连接并延长交于点,则下列结论一定成立的个数为

的平分线;

②若,则

④点的垂直平分线上.

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,菱形的顶点C与原点O重合,点By轴的正半轴上,点A在反比例函数的图象上,点D的坐标为.将菱形ABCD沿x轴正方向平移____个单位,可以使菱形的另一个顶点恰好落在该函数图象上.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算题

1) -11-7-8+62)(-0.6)+1.7+(+0.6)+(-1.7 )-9

(3) (4)

(5) (6)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某种油菜籽在相同条件下的发芽实验结果如表:

1a b

2)这种油菜籽发芽的概率估计值是多少?请简要说明理由;

3)如果该种油菜籽发芽后的成秧率为90%,则在相同条件下用10000粒该种油菜籽可得到油菜秧苗多少棵?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】元旦放假时,小明一家三口一起乘小轿车去探望爷爷、奶奶和姥爷、姥姥.早上从家里出发,向东走了5千米到超市买东西,然后又向东走了2.5千米到爷爷家,下午从爷爷家出发向西走了10千米到姥爷家,晚上返回家里.

1)若以小明家为原点,向东为正方向,用1个单位长度表示1千米,请将超市、爷爷家和姥爷家的位置在下面数轴上分别用点ABC表示出来;

2)超市和姥爷家相距多少千米?

3)若小轿车每千米耗油0.08升,求小明一家从出发到返回家,小轿车的耗油量.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:有一组对角是直角的四边形叫做“准矩形”;有两组邻边(不重复)相等的四边形叫做“准菱形”.如图①,在四边形ABCD中,若∠A=∠C90°,则四边形ABCD是“准矩形”;如图②,在四边形ABCD中,若ABADBCDC,则四边形ABCD是“准菱形”.

1)如图,在边长为1的正方形网格中,ABC在格点(小正方形的顶点)上,请分别在图③、图④中画出“准矩形”ABCD和“准菱形”ABCD′.(要求:DD′在格点上);

2)下列说法正确的有 ;(填写所有正确结论的序号)

一组对边平行的“准矩形”是矩形;一组对边相等的“准矩形”是矩形;

一组对边相等的“准菱形”是菱形;一组对边平行的“准菱形”是菱形.

3)如图,在△ABC中,∠ABC90°,以AC为一边向外作“准菱形”ACEF,且ACECAFEFAECF交于点D

若∠ACE=∠AFE,求证:“准菱形”ACEF是菱形;

的条件下,连接BD,若BD,∠ACB15°,∠ACD30°,请直接写出四边形ACEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某摩托车厂本周计划每日生产450辆摩托车,由于工人实行轮休, 每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表: [增加的辆数为正数,减少的辆数为负数]

星期

增减

5

+7

3

+4

+10

9

25

1)本周星期六生产多少辆摩托车?

2)本周总产量与计划产量相比,是增加了还是减少了?为什么?

3)产量最多的那天比产量最少的那天多生产多少辆?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】两根木条,一根长20cm,另一根长24cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为(  )

A. 2cm B. 4cm C. 2cm22cm D. 4cm44cm

查看答案和解析>>

同步练习册答案