【题目】如图,∠AOC与∠BOC互余,OD平分∠BOC,∠AOE=2∠COE.若∠DOE=36°,求∠EOC的度数.
【答案】18°
【解析】
根据互余的定义可得∠AOB=90°,由角平分线和角的和与差可得:∠AOE=54°﹣∠BOD,∠COE=36°﹣∠BOD,根据∠AOE=2∠COE,列等式可得结论.
解:∵∠AOC与∠BOC互余,
∴∠AOB=∠AOC+∠BOC=90°.
∵OD平分∠BOC,
∴∠BOD=∠COD,
∵∠DOE=36°,
∴∠AOE=∠AOB﹣∠DOE﹣∠BOD
=90°﹣36°﹣∠BOD
=54°﹣∠BOD,
∠COE=∠DOE﹣∠COD=36°﹣∠BOD,
∵∠AOE=2∠COE,
∴54°﹣∠BOD=2(36°﹣∠BOD),
解得:∠BOD=18°,
∴∠EOC=36°﹣∠BOD=36°﹣18°=18°.
科目:初中数学 来源: 题型:
【题目】如果关于x的不等式组的整数解仅有1,2,那么适合这个不等式组的整数a,b组成的有序数对(a,b)共有( )
A. 2个B. 4个C. 6个D. 8个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小明将一个正方形纸剪去一个宽为的长条后, 再从剩下的长方形纸片上剪去一个宽为的长条,如果两次剪下的长条面积正好相等,那么剩下的白色长方形纸的面积为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题背景
如图1,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE≌△ABF≌△BCG≌△CDH,从而得到四边形EFGH是正方形。
类比研究
如图2,在正△ABC的内部,作∠BAD=∠CBE=∠ACF,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合)。
(1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明;
(2)△DEF是否为正三角形?请说明理由;
(3)进一步探究发现,△ABD的三边存在一定的等量关系,设,,,请探索,,满足的等量关系。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(4,0)两点,与y轴相交于点C,连结BC,点P为抛物线上一动点,过点P作x轴的垂线l,交直线BC于点G,交x轴于点E.
(1)求抛物线的表达式;
(2)当P位于y轴右边的抛物线上运动时,过点C作CF⊥直线l,F为垂足,当点P运动到何处时,以P,C,F为顶点的三角形与△OBC相似?并求出此时点P的坐标;
(3)如图2,当点P在位于直线BC上方的抛物线上运动时,连结PC,PB,请问△PBC的面积S能否取得最大值?若能,请求出最大面积S,并求出此时点P的坐标,若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个正方体礼盒如图所示,六个面分别写有“祝”“福”“祖”“国”“万”“岁”,其中“祝”的对面是“祖”,“万”的对面是“岁”,则它的表面展开图可能是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△AOB中,∠ABO=90°,OB=4,AB=8,直线y=-x+b分别交OA、AB于点C、D,且ΔBOD的面积是4.
(1)求直线AO的解析式;
(2)求直线CD的解析式;
(3)若点M是x轴上的点,且使得点M到点A和点C的距离之和最小,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学校近期举办了一年一度的经典诵读比赛.某班级因节目需要,须购买A、B两种道具.已知购买1件A道具比购买1件B道具多10元,购买2件A道具和3件B道具共需要45元.
(1)购买一件A道具和一件B道具各需要多少元?
(2)根据班级情况,需要这两种道具共60件,且购买两种道具的总费用不超过620元.
①请问道具A最多购买多少件?
②若其中A道具购买的件数不少于B道具购买件数,该班级共有几种方案?试写出所有方案,并求出最少费用为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,直线DE上有一点O,过点O在直线DE上方作射线OC,∠COE=140°,将一直角三角板AOB的直角顶点放在点O处,一条直角边OA在射线OD上,另一边OB在直线DE上方,将直角三角板绕着点O按每秒10°的速度逆时针旋转一周,设旋转时间为t秒.
(1)当直角三角板旋转到如图2的位置时,OA恰好平分∠COD,求此时∠BOC的度数;
(2)若射线OC的位置保持不变,在旋转过程中,是否存在某个时刻,使得射线OA、OC、OD中的某一条射线是另两条射线所成夹角的角平分线?若存在,请求出t的取值,若不存在,请说明理由;
(3)若在三角板开始转动的同时,射线OC也绕O点以每秒15°的速度逆时针旋转一周,从旋转开始多长时间,射线OC平分∠BOD.直接写出t的值.(本题中的角均为大于0°且小于180°的角)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com