精英家教网 > 初中数学 > 题目详情

【题目】如图,∠AOC与∠BOC互余,OD平分∠BOC,∠AOE2COE.若∠DOE36°,求∠EOC的度数.

【答案】18°

【解析】

根据互余的定义可得∠AOB90°,由角平分线和角的和与差可得:∠AOE54°﹣∠BOD,∠COE36°﹣∠BOD,根据∠AOE2COE,列等式可得结论.

解:∵∠AOC与∠BOC互余,

∴∠AOB=∠AOC+BOC90°

OD平分∠BOC

∴∠BOD=∠COD

∵∠DOE36°

∴∠AOE=∠AOB﹣∠DOE﹣∠BOD

90°36°﹣∠BOD

54°﹣∠BOD

COE=∠DOE﹣∠COD36°﹣∠BOD

∵∠AOE2COE

54°﹣∠BOD236°﹣∠BOD),

解得:∠BOD18°

∴∠EOC36°﹣∠BOD36°18°18°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如果关于x的不等式组的整数解仅有12,那么适合这个不等式组的整数ab组成的有序数对(ab)共有(  )

A. 2B. 4C. 6D. 8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小明将一个正方形纸剪去一个宽为的长条后, 再从剩下的长方形纸片上剪去一个宽为的长条,如果两次剪下的长条面积正好相等,那么剩下的白色长方形纸的面积为(  )

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题背景

如图1,在正方形ABCD的内部,作DAE=ABF=BCG=CDH,根据三角形全等的条件,易得DAE≌△ABF≌△BCG≌△CDH,从而得到四边形EFGH是正方形。

类比研究

如图2,在正ABC的内部,作BAD=CBE=ACF,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合)。

(1)ABD,BCE,CAF是否全等?如果是,请选择其中一对进行证明;

(2)DEF是否为正三角形?请说明理由;

(3)进一步探究发现,ABD的三边存在一定的等量关系,设,请探索满足的等量关系。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(4,0)两点,与y轴相交于点C,连结BC,点P为抛物线上一动点,过点P作x轴的垂线l,交直线BC于点G,交x轴于点E.

(1)求抛物线的表达式;

(2)当P位于y轴右边的抛物线上运动时,过点C作CF直线l,F为垂足,当点P运动到何处时,以P,C,F为顶点的三角形与OBC相似?并求出此时点P的坐标;

(3)如图2,当点P在位于直线BC上方的抛物线上运动时,连结PC,PB,请问PBC的面积S能否取得最大值?若能,请出最大面积S,并求出此时点P的坐标,若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个正方体礼盒如图所示,六个面分别写有”“”“”“”“”“”,其中的对面是”,“的对面是”,则它的表面展开图可能是(   )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在AOB中,∠ABO=90°OB=4AB=8,直线y=-x+b分别交OAAB于点CD,且ΔBOD的面积是4.

(1)求直线AO的解析式;

(2)求直线CD的解析式;

(3)若点Mx轴上的点,且使得点M到点A和点C的距离之和最小,求点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学校近期举办了一年一度的经典诵读比赛.某班级因节目需要,须购买AB两种道具.已知购买1A道具比购买1B道具多10元,购买2A道具和3B道具共需要45元.

1)购买一件A道具和一件B道具各需要多少元?

2)根据班级情况,需要这两种道具共60件,且购买两种道具的总费用不超过620元.

请问道具A最多购买多少件?

若其中A道具购买的件数不少于B道具购买件数,该班级共有几种方案?试写出所有方案,并求出最少费用为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,直线DE上有一点O,过点O在直线DE上方作射线OC,∠COE140°,将一直角三角板AOB的直角顶点放在点O处,一条直角边OA在射线OD上,另一边OB在直线DE上方,将直角三角板绕着点O按每秒10°的速度逆时针旋转一周,设旋转时间为t秒.

1)当直角三角板旋转到如图2的位置时,OA恰好平分∠COD,求此时∠BOC的度数;

2)若射线OC的位置保持不变,在旋转过程中,是否存在某个时刻,使得射线OAOCOD中的某一条射线是另两条射线所成夹角的角平分线?若存在,请求出t的取值,若不存在,请说明理由;

3)若在三角板开始转动的同时,射线OC也绕O点以每秒15°的速度逆时针旋转一周,从旋转开始多长时间,射线OC平分∠BOD.直接写出t的值.(本题中的角均为大于0°且小于180°的角)

查看答案和解析>>

同步练习册答案