精英家教网 > 初中数学 > 题目详情
4.阅读材料,回答问题:
材料
题1:经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性的大小相同,求三辆汽车经过这个十字路口时,至少要两辆车向左转的概率
题2:有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁(一把钥匙只能开一把锁),第三把钥匙不能打开这两把锁.随机取出一把钥匙开任意一把锁,一次打开锁的概率是多少?
我们可以用“袋中摸球”的试验来模拟题1:在口袋中放三个不同颜色的小球,红球表示直行,绿球表示向左转,黑球表示向右转,三辆汽车经过路口,相当于从三个这样的口袋中各随机摸出一球
问题:
(1)事件“至少有两辆车向左转”相当于“袋中摸球”的试验中的什么事件?
(2)设计一个“袋中摸球”的试验模拟题2,请简要说明你的方案
(3)请直接写出题2的结果.

分析 题1:因为此题需要三步完成,所以画出树状图求解即可,注意要做到不重不漏;
题2:根据题意列出表格,得出所有等可能的情况数,找出随机取出一把钥匙开任意一把锁,一次打开锁的情况数,即可求出所求的概率;
问题:
(1)绿球代表左转,所以为:至少摸出两个绿球;
(2)写出方案;
(3)直接写结果即可.

解答 解:题1:画树状图得:

∴一共有27种等可能的情况;
至少有两辆车向左转的有7种:直左左,右左左,左直左,左右左,左左直,左左右,左左左,
则至少有两辆车向左转的概率为:$\frac{7}{27}$.
题2:列表得:

 锁1锁2
钥匙1(锁1,钥匙1)(锁2,钥匙1)
钥匙2(锁1,钥匙2)(锁2,钥匙2)
钥匙3(锁1,钥匙3)(锁2,钥匙3)
所有等可能的情况有6种,其中随机取出一把钥匙开任意一把锁,一次打开锁的2种,
则P=$\frac{2}{6}=\frac{1}{3}$.
问题:
(1)至少摸出两个绿球;
(2)一口袋中放红色和黑色的小球各一个,分别表示不同的锁;另一口袋中放红色、黑色和绿色的小球各一个,分别表示不同的钥匙;其中同颜色的球表示一套锁和钥匙.“随机取出一把钥匙开任意一把锁,一次打开锁的概率”,相当于,“从两个口袋中各随机摸出一个球,两球颜色一样的概率”;
(3)$\frac{1}{3}$.

点评 此题考查了树状图法或列表法求概率以及利用类比法解决问题,解题的关键是根据题意画出树状图或表格,再由概率=所求情况数与总情况数之比求解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

14.如果抛物线y=(a-3)x2-2有最低点,那么a的取值范围是a>3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,△ABC边AB上点D、E(不与点A、B重合),满足∠DCE=∠ABC,∠ACB=90°,AC=3,BC=4;
(1)当CD⊥AB时,求线段BE的长;
(2)当△CDE是等腰三角形时,求线段AD的长;
(3)设AD=x,BE=y,求y关于x的函数解析式,并写出定义域.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.某运动队要从甲、乙、丙、丁四名运动员中选一名队员参加正式比赛,在选拔赛中,这四名运动员成绩的平均数与方差如下表所示:
平均数8998
方差111.21.3
若要根据选拔赛的成绩,选择一名成绩的平均数高且发挥稳定的队员参加正式比赛,则应选择(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.计算:(-$\frac{1}{4}$)0+$\sqrt{2}$($\sqrt{2}$+1)+$\root{3}{-8}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.抛物线y=2x2+1向下平移2个单位,再向左平移3个单位,得到的新抛物线的解析式为(  )
A.y=2(x+3)2+3B.y=2(x-3)2+3C.y=2(x+3)2-1D.y=2(x-3)2-1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.计算:(-$\frac{1}{4}$)0+(-2)-2-(-$\sqrt{3}$-2)2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.化简$\frac{{m}^{2}}{m-3}$-$\frac{9}{m-3}$的结果是m+3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如果|(a+2)5|+|b2-4|=0,求($\frac{a}{b}$)2014

查看答案和解析>>

同步练习册答案