【题目】下面是小华设计的“作一个角等于已知角的2倍”的尺规作图过程.
已知:.
求作:,使得.
作法:如图,
①在射线上任取一点;
②作线段的垂直平分线,交于点,交于点;
③连接;
所以即为所求作的角.
根据小华设计的尺规作图过程,
(1)使用直尺和圆规补全图形(保留作图痕迹);
(2)完成下面的证明(说明:括号里填写推理的依据).
证明:∵是线段的垂直平分线,
∴______(______)
∴.
∵(______)
∴.
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,∠C=90°.
(1)如图①,点O在斜边AB上,以点O为圆心,OB长为半径的圆交AB于点D,交BC于点E,与边AC相切于点F.求证:∠1=∠2;
(2)在图②中作⊙M,使它满足以下条件:①圆心在边AB上;②经过点B;③与边AC相切.(尺规作图,只保留作图痕迹,不要求写出作法)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD中,∠BAD=60°,AC与BD交于点O,E为CD延长线上的一点,且CD=DE,连结BE分别交AC,AD于点F、G,连结OG,则下列结论:①OG=AB;②与△EGD全等的三角形共有5个;③S四边形ODGF>S△ABF;④由点A、B、D、E构成的四边形是菱形.其中正确的是( )
A.①④B.①③④C.①②③D.②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=x+4的图象与反比例函数y=(k为常数且k≠0)的图象交于A(﹣1,a),B两点,与x轴交于点C.
(1)求此反比例函数的表达式;
(2)若点P在x轴上,且S△ACP=S△BOC,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】老张用400元购买了若干只种兔,老李用440元也购买了相同只数的种兔,但单价比老张购买的种兔的单价贵5元.
(1)老张与老李购买的种兔共有多少只?
(2)一年后,老张养兔数比买入种兔数增加了2只,老李养兔数比买入种兔数的2倍少1只,两人将兔子全部售出,则售价至少为多少元时,两人所获得的总利润不低于960元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图在△ABC中,∠ACB=90°,AC=BC,E为外角∠BCD平分线上一动点(不与点C重合),点E关于直线BC的对称点为F,连接BE,连接AF并延长交直线BE于点G.
(1)求证:AF=BE;
(2)用等式表示线段FG,EG与CE的数量关系,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ABC=90°.AB=BC.点D是线段AB上的一点,连结CD.过点B作BG⊥CD,分别交CD、CA于点E、F,与过点A且垂直于AB的直线相交于点G,连结DF,给出以下四个结论:①;②若点D是AB的中点,则AF=AB;③当B、C、F、D四点在同一个圆上时,DF=DB;④若,则S△ABC=9S△BDF,其中正确的结论序号是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙、丙,丁四个人做“击鼓传花”游戏,游戏规则是:第一次由甲将花随机传给乙、丙、丁三人中的某一人中的某一人,以后的每一次传花都是由接到花的人随机传给其他三人中的某一人.
(1)甲第一次传花时,恰好传给乙的概率是 ;
(2)求经过两次传花,花恰好回到甲手中的概率;
(3)经过三次传花,花落在丙手上的概率记作P1,落在丁手上的概率记作P2,则P1 P2(填“>”、“<”或者“=”)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com