精英家教网 > 初中数学 > 题目详情

【题目】解答
(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.
证明:DE=BD+CE.

(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.

(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.

【答案】
(1)证明:∵BD⊥直线m,CE⊥直线m,

∴∠BDA=∠CEA=90°,

∵∠BAC=90°,

∴∠BAD+∠CAE=90°,

∵∠BAD+∠ABD=90°,

∴∠CAE=∠ABD,

∵在△ADB和△CEA中

∴△ADB≌△CEA(AAS),

∴AE=BD,AD=CE,

∴DE=AE+AD=BD+CE


(2)证明:成立.

∵∠BDA=∠BAC=α,

∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,

∴∠CAE=∠ABD,

∵在△ADB和△CEA中

∴△ADB≌△CEA(AAS),

∴AE=BD,AD=CE,

∴DE=AE+AD=BD+CE


(3)证明:△DEF是等边三角形.

由(2)知,△ADB≌△CEA,

BD=AE,∠DBA=∠CAE,

∵△ABF和△ACF均为等边三角形,

∴∠ABF=∠CAF=60°,

∴∠DBA+∠ABF=∠CAE+∠CAF,

∴∠DBF=∠FAE,

∵BF=AF

在△DBF和△EAF中

∴△DBF≌△EAF(SAS),

∴DF=EF,∠BFD=∠AFE,

∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,

∴△DEF为等边三角形


【解析】(1)根据BD⊥直线m,CE⊥直线m得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,然后根据“AAS”可判断△ADB≌△CEA,则AE=BD,AD=CE,于是DE=AE+AD=BD+CE;(2)与(1)的证明方法一样;(3)由前面的结论得到△ADB≌△CEA,则BD=AE,∠DBA=∠CAE,根据等边三角形的性质得∠ABF=∠CAF=60°,则∠DBA+∠ABF=∠CAE+∠CAF,则∠DBF=∠FAE,利用“SAS”可判断△DBF≌△EAF,所以DF=EF,∠BFD=∠AFE,于是∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,根据等边三角形的判定方法可得到△DEF为等边三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】解为x=﹣3的方程是(
A.3x﹣2=﹣7
B.3x+2=﹣11
C.2x+6=0
D.x﹣3=0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小亮从一本书的第m页开始读,一直读到第n页,则他一共读了( )

A. (m+n)页 B. (n-m)页 C. (n-m-1)页 D. (n-m+1)页

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,△A′B′C′是△ABC经过平移得到的,A(﹣4,﹣1),B(﹣5,﹣4),C(﹣1,﹣3),△ABC中任意一点P(x1 , y1)平移后的对应点为P′(x1+6,y1+4).

(1)请写出三角形ABC平移的过程;
(2)分别写出点A′,B′,C′的坐标;
(3)求△A′B′C′的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一个角的两边与另一个角的两边分别平行,请结合图,探索这两个角之间的关系,并说明理由.
(1)如图①,AB∥CD,BE∥DF,∠1与∠2的关系是什么? 证明:
(2)如图②,AB∥CD,BE∥DF,∠1与∠2的关系是什么? 证明:
(3)经过上述证明,我们可得出结论,如果一个角的两边与另一个角的两边分别平行,那么这两个角
(4)若这两个角的两边分别平行,且一个角比另一个角的3倍少60°,则这两个角分别是多少度?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB90°A30°,点DAB上,以BD为直径的⊙OAC于点E,连接DE并延长,交BC的延长线于点F

1)求证:BDF是等边三角形;

2)连接AFDC,若BC3,写出求四边形AFCD面积的思路.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知tanβ=22.3,则β=(精确到1″)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某电厂有5000吨电煤.

(1)求:这些电煤能够使用的天数x(单位:天)与该厂平均每天用煤吨数y(单位:吨)之间的函数关系;

(2)若平均每天用煤200吨,则这批电煤能用多少天?

(3)若该电厂前10天每天用200吨,后因各地用电紧张,每天用电煤300吨,则这批电煤共可用多少天?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】分解因式.

(1)x2(x﹣y)+y2(y﹣x)

(2)(a2+1)﹣4a2

查看答案和解析>>

同步练习册答案