精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,直线分别与轴,轴交于两点,与直线交于点.

1)求的值;

2)求出直线的解析式;

3为线段上一点(不含端点),连接,一动点从点出发,沿线段以每秒1个单位长度的速度运动到,再沿线段以每秒个单位长度的速度运动到点后停止,请直接写出点在整个运动过程的最少用时.(提示:过点和点,分别作轴,轴的垂线,两垂线交于点

【答案】(1)1;(2)y=2x;(3)点H在整个运动过程的最少用时是6.

【解析】

1)先求直线l1的解析式,从而可以求点B,点A的坐标,求出OAOB即可求得.

2)由SAOC=9OA=3即可求点C的纵坐标,点C是直线l1与直线l2的交点,即可求出直线l2的解析式

3)过点CCJy轴于J,过点PPQCJ于点Q,由题意得,点H在整个运动过程的用时t,即点H在整个运动过程所用的时间是线段POPH的长度之和,也就是点OPQ共线时有最小值.

解:(1)∵直线11y=k1x+3经过点A-30),
0=-3k1+3,即k1=1OA=3
故直线11的解析式为:y=x+3
∴直线l1y=x+3y轴交点是B03)即OB=3

2)∵SAOC=9OA=3
∴点COA也就是到x轴的距离是6,由图可设Cx6

,解得

故直线l2的解析式是:y=2x
3)如图

过点CCJy轴于J,过点PPQCJ于点Q
∵动点H从点O出发,沿线段OP以每秒1个单位长度的速度运动到P,遭到沿线段PC以每秒个单位长度的速度运动到点C后停止
∴点H在整个运动过程的用时t

tanBAO=,则∠BAO=45°
故∠CPQ=ABO=45°
PQ=PCcosCPQ=

t

即点H在整个运动过程所用的时间是线段POPH的长度之和

∴当点P与点B重合,也就是点OPQ共线时,OP+QP取得最小值,且(OP+QP最小=OJ=6
即点H在整个运动过程所用时间的最小值为6秒.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).

请根据以上信息回答:

(1)本次参加抽样调查的居民有多少人?

(2)将两幅不完整的图补充完整;

(3)若居民区有8000人,请估计爱吃D粽的人数;

(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校团委为了教育学生,开展了以感恩为主题的有奖征文活动,并为获奖的同学颁发奖品.小红与小明去文化商店购买甲、乙两种笔记本作为奖品,若买甲种笔记本20个,乙种笔记本10个,共用110元;且买甲种笔记本30个比买乙种笔记本20个少花10元.

(1)求甲、乙两种笔记本的单价各是多少元?

(2)若本次购进甲种笔记本的数量比乙种笔记本的数量的2倍还少10个,且购进两种笔记本的总数量不少于80本,总金额不超过320元.请你设计出本次购进甲、乙两种笔记本的所有方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点A04),B70),C74),连接ACBC得到矩形AOBC,点D的边AC上,将边OA沿OD折叠,点A的对应边为A'.若点A'到矩形较长两对边的距离之比为13,则点A'的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,我们定义直线y=axa为抛物线y=ax2+bx+cabc为常数,a≠0)的梦想直线;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其梦想三角形

已知抛物线与其梦想直线交于AB两点(点A在点B的左侧),与x轴负半轴交于点C

1)填空:该抛物线的梦想直线的解析式为

2)如图,点M为线段CB上一动点,将ACMAM所在直线为对称轴翻折,点C的对称点为N,若AMN为该抛物线的梦想三角形,求点N的坐标;

3)当点E在抛物线的对称轴上运动时,在该抛物线的梦想直线上,是否存在点F,使得以点ACEF为顶点的四边形为平行四边形?若存在,请直接写出点EF的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场服装部为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励.为了确定一个适当的月销售目标,商场服装部统计了每位营业员在某月的销售额(单位:万元),数据如下:

17

18

16

13

24

15

28

26

18

19

22

17

16

19

32

30

16

14

15

26

15

32

23

17

15

15

28

28

16

19

对这30个数据按组距3进行分组,并整理、描述和分析如下.

频数分布表

组别

销售额

频数

7

9

3

2

2

数据分析表

平均数

众数

中位数

20.3

18

请根据以上信息解答下列问题:

(1)填空:a=  ,b=  ,c=  

(2)若将月销售额不低于25万元确定为销售目标,则有  位营业员获得奖励;

(3)若想让一半左右的营业员都能达到销售目标,你认为月销售额定为多少合适?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某出租公司有若干辆同一型号的货车对外出租,每辆货车的日租金实行淡季、旺季两种价格标准,旺季每辆货车的日租金比淡季上涨.据统计,淡季该公司平均每天有辆货车未出租,日租金总收入为元;旺季所有的货车每天能全部租出,日租金总收入为元.

1)该出租公司这批对外出租的货车共有多少辆?淡季每辆货车的日租金多少元?

2)经市场调查发现,在旺季如果每辆货车的日租金每上涨元,每天租出去的货车就会减少辆,不考虑其它因素,每辆货车的日租金上涨多少元时,该出租公司的日租金总收入最高?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,ACO的直径,点DBC上,ACCD,∠ACB2BAD

1)求证:ABO相切;

2)连接OD,若tanB,求tanADO

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点EF分别在BCCD上,下列结论:①CE=CF;②BD=1+;③BE+DF=EF;④∠AEB=75°.其中正确的序号是______

查看答案和解析>>

同步练习册答案