【题目】如图,在一笔直的海岸线l上有A,B两个观测站,A在B的正东方向2千米处.有一艘小船在观测点A北偏西60°的方向上航行,一段时间后,到达点C处,此时,从观测点B测得小船在北偏西15°方向上.求点C与点B之间的距离.(结果保留根号)
科目:初中数学 来源: 题型:
【题目】某超市开展早市促销活动,为早到的顾客准备一份简易早餐,餐品有四样:A.韭菜包,B.豆沙包,C.鸡蛋,D.油条.超市约定:“随机发放,早餐一人一份,一份两样,一样一个.”
(1)按约定,某顾客该天“早餐得到两个鸡蛋”是 事件(填“随机”“必然”或“不可能”):
(2)请用列表或画树状图的方法,求出某顾客该天“早餐刚好得到一个韭菜包和一根油条”的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,,分别表示使用一种白炽灯和一种节能灯的费用(费用灯的售价电费,单位:元)与照明时间(小时)的函数图象,假设两种灯的使用寿命都是小时,照明效果一样.
(1)根据图象分别求出,的函数表达式;
(2)小亮认为节能灯一定比白炽灯省钱,你是如何想的?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是抛物线y=ax2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A(1,4),与x轴的一个交点是B(3,0),下列结论:①abc>0;②2a+b=0;③方程ax2+bx+c=4有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣2.0);⑤x(ax+b)≤a+b,其中正确结论的个数是( )
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线的开口向上顶点为P
(1)若P点坐标为(4,一1),求抛物线的解析式;
(2)若此抛物线经过(4,一1),当-1≤x≤2时,求y的取值范围(用含a的代数式表示)
(3)若a=1,且当0≤x≤1时,抛物线上的点到x轴距离的最大值为6,求b的值
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】发现问题:如图1,直线a∥b,点B、C在直线b上,点D为AC的中点,过点D的直线与a,b分别相交于M、N两点,与BA的延长线交于点P,若△ABC的面积为1,则四边形AMNB的面积为 ;
探究问题:如图2,Rt△ABC中,∠DAC=∠BAC,DA=2,求△ABC面积的最小值;
拓展应用:如图3,矩形花园ABCD的长AD为400米,宽CD为300米,供水点E在小路AC上,且AE=2CE,现想沿BC上一点M和CD上一点N修一条小路MN,使得MN经过E,并在四边形AMCN围城的区域内种植花卉,剩余区域铺设草坪根据项目的要求种植花卉的区域要尽量小.请根据相关数据求出四边形AMCN面积的最小值,及面积取最小时点M、N的位置.(小路的宽忽略不计)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AC=5,AB=7,BC=4,点D在边AB上,且AD=3,动点P从点A出发,以每秒1个单位长度的速度向终点B运动,以PD为边向上作正方形PDMN,设点P运动的时间为t,正方形PDMN与△ABC重叠部分的面积为S.
(1)用含有t的代数式表示线段PD的长
(2)当点N落在△ABC的边上时,求t的值
(3)求S与t的函数关系式
(4)当点P在线段AD上运动时,作点N关于CD的对称点N′,当N′与△ABC的某一个顶点所连的直线平分△ABC的面积时,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(10分)如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D,E分别是边BC,AC的中点,连接DE. 将△EDC绕点C按顺时针方向旋转,记旋转角为α.
(1)问题发现
① 当时,;② 当时,
(2)拓展探究
试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情况给出证明.
(3)问题解决
当△EDC旋转至A、D、E三点共线时,直接写出线段BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQAC,其中正确的结论的个数是_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com