精英家教网 > 初中数学 > 题目详情
18.已知抛物线G1:y=ax2+bx+c的顶点为(2,-3),且经过点(4,1).
(1)求抛物线G1的解析式;
(2)将抛物线G1先向左平移3个单位,再向下平移1个单位后得到抛物线G2,且抛物线G2与x轴的负半轴相交于A点,求A点的坐标;
(3)如果直线m的解析式为${y_{\;}}=\frac{1}{2}x+3$,点B是(2)中抛物线G2上的一个点,且在对称轴右侧部分(含顶点)上运动,直线n过点A和点B.问:是否存在点B,使直线m、n、x轴围成的三角形和直线m、n、y轴围成的三角形相似?若存在,求出点B的坐标;若不存在,请说明理由.

分析 (1)先设为顶点式,再把顶点坐标和经过的点(4,1)代入即可解决,
(2)根据平移规则直接写出抛物线G2的解析式,令y=0,即可求出点A的坐标,
(3)分为交点咋x轴上方,与下方进行分析,根据相似确定角的大小,进一步得到直线n的斜率,求出与y轴的交点坐标,由点A(-3,0),运用待定系数法,确定直线n的解析式,联立抛物线G2,解方程组即可求解.

解答 解:由抛物线G1:y=ax2+bx+c的顶点为(2,-3),且经过点(4,1),
可设抛物线G1:y=a(x-2)2-3,
把(4,1)代入得:1=4a-3,解得:a=1,
所以抛物线G1:y=(x-2)2-3=x2-4x+1,
(2)抛物线G1:y=(x-2)2-3先向左平移3个单位,再向下平移1个单位后得到抛物线G2:y=(x+1)2-4,
令y=0,得:0=(x+1)2-4,解得:x=-3,或x=1(舍去),
所以点A(-3,0).
(3)
直线m与x轴,y轴的交点分别为F,E,
当直线n与G2交点在x轴上方时,直线n与x轴,y轴的交点为A,D,与抛物线交点B,与直线m交与点C,
当直线n与G2交点在x轴下方时,直线n1与x轴,y轴的交点为A,H,与抛物线交点B1,与直线m交与点L,
当直线n与G2交点在x轴上方时,如图1:

由题意△CDE∽△CFA,此时有:∠CDE=∠CFA,
直线m的解析式为${y_{\;}}=\frac{1}{2}x+3$,当x=0时,y=3,当y=0时,x=-6,
∴点E(0,3),点F(-6,0),
∴OF=6,OE=3,
∴tan∠CDE=tan∠CFA=$\frac{1}{2}$,
∴$\frac{OA}{OD}$=$\frac{1}{2}$,
∵OA=3,
∴OD=6,
点D(0,6),
设直线n:y=mx+n,把D(0,6),点A(-3,0)代入得:$\left\{\begin{array}{l}{6=n}\\{0=-3m+n}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{m=2}\\{n=6}\end{array}\right.$,
∴直线n:y=2x+6,
联立直线n和抛物线G2得:$\left\{\begin{array}{l}{y=2x+6}\\{y=(x+1)^{2}-4}\end{array}\right.$,
解得:x=3,或x=-3(舍去)
此时y=12,
所以:点B(3,12),
当直线n与G2交点在x轴下方时,如图2:

由题意△HLE∽△FLA,此时有:∠ELH=∠FLA=90°,
∠EHA=∠LFA,
直线m的解析式为${y_{\;}}=\frac{1}{2}x+3$,当x=0时,y=3,当y=0时,x=-6,
∴点E(0,3),点F(-6,0),
∴OF=6,OE=3,
∴tan∠EHA=tan∠LFA=$\frac{1}{2}$,
∴$\frac{OA}{OH}$=$\frac{1}{2}$,
∵OA=3,
∴OH=6,
点H(0,-6),
设直线n:y=mx+n,把D(0,-6),点A(-3,0)代入得:$\left\{\begin{array}{l}{-6=n}\\{0=-3m+n}\end{array}\right.$
解得:$\left\{\begin{array}{l}{m=-2}\\{n=-6}\end{array}\right.$,
∴直线n:y=-2x-6,
联立直线n和抛物线G2得:$\left\{\begin{array}{l}{y=-2x-6}\\{y=(x+1)^{2}-4}\end{array}\right.$,
解得:x=-1,或x=-3(舍去)
此时y=-4,
所以:点B1(-1,-4),
综上所述:存在点B,使直线m、n、x轴围成的三角形和直线m、n、y轴围成的三角形相似,点B的坐标为(3,12)和(-1,-4).

点评 此题主要考查二次函数的综合问题,会运用待定系数法求函数解析式,会根据相似判断出相等的对应角,并会根据三角函数求出线段的值进一步表示点的坐标,是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

2.计算$\sqrt{\frac{2}{3}}$÷$\sqrt{\frac{3}{2}}$的结果是(  )
A.0B.1C.2D.$\frac{2}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.平面内有一等腰直角三角板(∠ACB=90°) 直线过点A.过点C作CE⊥MN于点E,过点B作BF⊥MN于点F.当点E与点A重合时(如图1),易证:AF+BF=2CE.
(1)当三角板绕点A顺时针旋转至图2的位置时,上述结论是否仍然成立?若成立,请给予证明,若不成立,也请说明理由;
(2)当三角板绕点A顺时针旋转至图3的位置时,线段AF、BF、CE之间又有怎样的数量关系,请写出你的猜想,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,已知二次函数y=-x2-3x+4的图象与x轴的交于A,B两点,与y轴交于点C.一次函数的图象过点A、C.
(1)求△ABC的面积.
(2)求一次函数的解析式.
(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围x<0或x>4.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.如图所示,在正方形网格中,图②是由图①经过旋转变换得到的,其旋转中心是点(  )
A.A点B.B点C.C点D.无法确定

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从点A开始向点B以2cm/s的速度移动,点Q沿DA边从点D开始向点A以1cm/s的速度移动,如果P、Q同时出发,用t表示移动的时间(0≤t≤6),那么:
(1)当t为何值时,△QAP是等腰直角三角形?
(2)求四边形QAPC的面积;
(3)当t为何值时,△PCQ的面积是31cm2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.解下列分式方程.
(1)$\frac{2}{2x+1}+\frac{1}{2x+1}$=1
(2)$\frac{2}{x-1}+\frac{1}{1-x}=\frac{1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.现有一个正六边形的纸片,该纸片的边长为20cm,张萌想用一张圆形纸片将该正六边形纸片完全覆盖住,则圆形纸片的直径不能小于40cm.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.为了解某校“阅读工程”的开展情况.市教育局从该校初中生中随机抽取了150名学生进行了阅读情况的问卷调查,绘制了如下不完全的统计图:

根据上述统计图提供的信息,解答下列问题:
(1)每天阅读时间在1-2小时学生有多少人?
(2)采用“笔记积累”阅读方式的学生有多少人?
(3)补全条形统计图.
(4)若将写读后感、笔记积累、画圈点读三种方式称为记忆阅读,求笔记积累人数占有记忆阅读人数的百分比.

查看答案和解析>>

同步练习册答案