【题目】如图.点A、B、C、D在⊙O上,AC⊥BD于点E,过点O作OF⊥BC于F,求证:
(1)△AEB∽△OFC;
(2)AD=2FO.
【答案】(1)证明见解析.(2)证明见解析.
【解析】试题分析:(1)连接OB,利用三线合一和圆周角定理得出∠BAE=∠COF,根据条件可得∠OFC=∠AEB=90°,然后即可得出结论;(2)利用(1)中△AEB∽△OFC得出,根据条件证明△ADE∽△BCE得出,进而得出,然后利用垂经定理即可证出结论.
试题解析:(1)如图,连接OB,
则∠BAE=∠BOC,
∵OF⊥BC,
∴∠COF=∠BOC,
∴∠BAE=∠COF,
又∵AC⊥BD,OF⊥BC,
∴∠OFC=∠AEB=90°
∴△AEB∽△OFC,
(2)∵△AEB∽△OFC,
∴
即
由圆周角定理,∠D=∠BCE,∠DAE=∠CBE,
∴△ADE∽△BCE。
∴
∴
∵OF⊥BC
∴BC=2CF
∴AD =2FO
科目:初中数学 来源: 题型:
【题目】如图,在半径为5的⊙O中,弦AB=8,P是弦AB所对的优弧上的动点,连接AP,过点A作AP的垂线交射线PB于点C,当△PAB是等腰三角形时,线段BC的长为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】种植草莓大户张华现有22吨草莓等待出售,有两种销售渠道,一是运往省城直接批发给零售商,二是在本地市场零售,受客观因素影响,张华每天只能采用一种销售渠道,而且草莓必须在10天内售出(含10天)经过调查分析,这两种销售渠道每天销量及每吨所获纯利润见右表:
(1)若一部分草莓运往省城批发给零售商,其余在本地市场零售,请写出销售22吨草莓所获纯利润y(元)与运往省城直接批发零售商的草莓量x(吨)之间的函数关系式;
(2)怎样安排这22吨草莓的销售渠道,才使张华所获纯利润最大?并求出最大纯利润.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点C,D是半圆上的三等分点,连接AC,BC,CD,OD,BC和OD相交于点E.则下列结论:
①∠CBA=30°,②OD⊥BC,③OE=AC,④四边形AODC是菱形.
正确的个数是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA与⊙O的另一个交点为E,连接AC,CE.
(1)求证:∠B=∠D;
(2)若AB=4,BC﹣AC=2,求CE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知如图所示,△AOB与△COD关于点O成中心对称,连接BC,AD.
(1)求证:四边形ABCD为平行四边形;
(2)若△AOB的面积为15 cm2,求四边形ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】从社会效益和经济效益出发,某地制定了三年规划,投入资金进行生态环境建设,并以此发展旅游产业。根据规划,第一年度投入资金800万元,第二年度比第一年度减少,第三年度比第二年度减少。第一年度当地旅游业收入估计为400万元,要使三年内的投入资金与旅游业总收入持平,旅游业收入的年增长率应是多少?(以下数据供选用: =1.414, =3.606 计算结果精确到百分位)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,BC⊥AC,BC=8,AC=6,AB=10,则点 C 到线段 AB 的距离是_____.
[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/13/1923292236627968/1924724835434496/STEM/46ca9c8351da4594816ea507a60c9cdd.png]
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com