【题目】如图,抛物线y=ax2+bx+c(a≠0)与x轴交于(-1,0),(3,0)两点,则下列说法:①abc<0;②a-b+c=0;③2a+b=0;④2a+c>0;⑤若A(x1,y1),B(x2,y2),C(x3,y3)为抛物线上三点,且-1<x1<x2<1,x3>3,则y2<y1<y3,其中正确的结论是( )
A.
B.
C.
D.
【答案】D
【解析】
①abc<0,由图象知c<0,a、b异号,所以,①错误;②a-b+c=0,当x=-1时,y=a-b+c=0,正确;③2a+b=0,函数对称轴x=-=1,故正确;④2a+c>0,由②、③知:3a+c=0,而-a<0,∴2a+c<0,故错误;⑤若A(x1,y1),B(x2,y2),C(x3,y3)为抛物线上三点,且-1<x1<x2<1,x3>3,则y2<y1<y3,把A、B、C坐标大致在图上标出,可知正确.
解:①abc<0,由图象知c<0,a、b异号,所以,①错误;
②a-b+c=0,当x=-1时,y=a-b+c=0,正确;
③2a+b=0,函数对称轴x=-=1,故正确;
④2a+c>0,由②、③知:3a+c=0,而-a<0,∴2a+c<0,故错误;
⑤若A(x1,y1),B(x2,y2),C(x3,y3)为抛物线上三点,且-1<x1<x2<1,x3>3,则y2<y1<y3,把A、B、C坐标大致在图上标出,可知正确;
故选D.
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠A=30°,点O是边AB上一点,以点O为圆心,以OB为半径作圆,⊙O恰好与AC相切于点D,连接BD.若BD平分∠ABC,AD=2,则线段CD的长是( )
A. 2 B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,可以自由转动的转盘被平均分成了三等分标有数字﹣2,3,﹣1的扇形区域转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)
(1)转动转盘一次,求转出的数字是3的概率;
(2)转动转盘两次,设第一次得到的数字为x,第二次得到的数字为y,点M的坐标为(x,y),请用树状图或列表法求点M在反比例函数y=﹣的图象上的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是小宇设计的“作已知直角三角形的中位线”的尺规作图过程.
已知:在△ABC中,∠C=90°.
求作:△ABC的中位线DE,使点D在AB上,点E在AC上.
作法:如图,
①分别以A,C为圆心,大于AC长为半径画弧,两弧交于P,Q两点;
②作直线PQ,与AB交于点D,与AC交于点E.
所以线段DE就是所求作的中位线.
根据小宇设计的尺规作图过程,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明.
证明:连接PA,PC,QA,QC,DC,
∵PA=PC,QA= ,
∴PQ是AC的垂直平分线( )(填推理的依据).
∴E为AC中点,AD=DC.
∴∠DAC=∠DCA,
又在Rt△ABC中,有∠BAC+∠ABC=90°,∠DCA+∠DCB=90°.
∴∠ABC=∠DCB( )(填推理的依据).
∴DB=DC.
∴AD=BD=DC.
∴D为AB中点.
∴DE是△ABC的中位线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知平行四边形ABCD中,CE平分∠BCD且交AD于点E,A F∥CE,且交BC于点F.
(1)求证:△ABF≌△CDE;
(2)如图,若∠1=65°,求∠B的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A(1,a)是反比例函数y1=的图象上一点,直线y2=﹣与反比例函数y1=的图象的交点为点B、D,且B(3,﹣1),求:
(1)求反比例函数的解析式;
(2)求点D坐标,并直接写出y1>y2时x的取值范围;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下尚不完整的统计图表.
调查结果统计表
组别 | 分组(单位:元) | 人数 |
A | ||
B | ||
C | ||
D | ||
E |
调查结果扇形统计图
请根据以上图表,解答下列问题:
(1)这次被调查的同学共有______人,______,_______;
(2求扇形统计图中C所在的扇形的圆心角度数;.
(3)该校共有学生人,请估计每月零花钱的数额在范围内的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一个直径为1m的圆形铁皮,要从中剪出一个最大的圆心角为90°的扇形ABC,如图所示.
(1)求被剪掉阴影部分的面积:
(2)用所留的扇形铁皮围成一个圆锥,该圆锥的底面圆的半径是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com