精英家教网 > 初中数学 > 题目详情

【题目】李老师将1个黑球和若干个白球放入一个不透明的口袋中并搅匀,让学生进行摸球试验,每次摸出一个球(放回),下表是活动进行中的一组统计数据.

摸球的次数n

100

150

200

500

800

1000

摸到黑球的次数m

23

31

60

130

203

251

摸到黑球的频率

0.23

0.21

0.30

_____

_____

_____

1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个黑球的概率是______.(结果都保留小数点后两位)

2)估算袋中白球的个数为________

3)在(2)的条件下,若小强同学有放回地连续两次摸球,用画树状图或列表的方法计算出两次都摸出白球的概率.

【答案】表格内数据:0.260.250.25 10.25;(23;(3

【解析】

(1)直接利用频数÷总数=频率求出答案;

(2)设袋子中白球有x,利用表格中数据估算出得到黑球的频率列出关于x的分式方程,

(1)251÷1000=0.251;

∵大量重复试验事件发生的频率逐渐稳定到0.25附近0.25,

∴估计从袋中摸出一个球是黑球的概率是0.25;

2)设袋中白球为x个,

=0.25,

x=3

答:估计袋中有3个白球.

3)由题意画树状图得:

由树状图可知,所有可能出现的结果共有16种,这些结果出现的可能性相等,其中两次都摸出白球的有9种情况.

所以P(两次都摸出白球)=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一次函数的图象与反比例函数的图象相交于A21),B两点.

1)求出反比例函数与一次函数的表达式;

2)请直接写出B点的坐标,并指出使反比例函数值大于一次函数值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学习了正多边形之后,小马同学发现利用对称、旋转等方法可以计算等分正多边形面积的方案.

1)请聪明的你将下面图、图、图的等边三角形分别割成2个、3个、4个全等三角形;

2)如图,等边△ABC边长AB4,点O为它的外心,点MN分别为边ABBC上的动点(不与端点重合),且∠MON120°,若四边形BMON的面积为s,它的周长记为l,求最小值;

3)如图,等边△ABC的边长AB4,点P为边CA延长线上一点,点Q为边AB延长线上一点,点DBC边中点,且∠PDQ120°,若PAx,请用含x的代数式表示△BDQ的面积SBDQ

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,tanAMN分别在边ADBC上,将四边形AMNB沿MN翻折,使AB的对应线段EF经过顶点D,当EFAD时,的值为(  )

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一幅长20cm、宽12cm的图案,如图,其中有一横两竖的彩条,横、竖彩条的宽度比为3:2.设竖彩条的宽度为xcm,图案中三条彩条所占面积为ycm2

(1)求y与x之间的函数关系式;

(2)若图案中三条彩条所占面积是图案面积的,求横、竖彩条的宽度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解题:学习了二次根式后,你会发现一些含有根号的式子可以写成另一个式子的平方,如3+2=(1+2,我们来进行以下的探索:

a+b=(m+n2(其中abmn都是正整数),则有a+bm2+2n2+2mn,∴am2+2n2b2mn,这样就得出了把类似a+b的式子化为平方式的方法,请仿照上述方法探索并解决下列问题:

1)当abmn都为正整数时,若a+b=(m+n2,用含mn的式子分别表示ab,得a   b   

2)若a4=(mn2amn都为正整数,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,E为边AD的中点,点F在边CD上,且∠BEF90°,延长EFBC的延长线于点G.

(1)求证:△ABE∽△EGB.

(2)AB4,求CG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰三角形ABC内接于⊙OCACB,过点AAEBC,交⊙O于点E,过点C作⊙O的切线交AE的延长线于点D,已知AB6BE3

1)求证:四边形ABCD为平行四边形;

2)延长AODC的延长线于点F,求AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0).点P是直线BC上方的抛物线上一动点.

(1)求二次函数y=ax2+2x+c的表达式;

(2)连接PO,PC,并把POC沿y轴翻折,得到四边形POP′C.若四边形POP′C为菱形,请求出此时点P的坐标;

(3)当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.

查看答案和解析>>

同步练习册答案