精英家教网 > 初中数学 > 题目详情

【题目】如图,在四边形ABCD中,AB1ADBD2,∠ABC+∠ADC180°CD

1)判断ABD的形状,并说明理由;

2)求BC的长.

【答案】1ABD是直角三角形.理由见解析;(2.

【解析】

1)根据勾股定理的逆定理即可证得ABD是直角三角形;

2)根据四边形内角和定理可证得是直角三角形,再根据勾股定理即可求得答案.

1ABD是直角三角形.

理由如下:在ABD中,

AB2AD212()24

BD2224

AB2AD2BD2

ABD是直角三角形.

2 在四边形ABCD中,

∵∠ABC+∠ADC180°

∴∠A+∠C180°

由(1)得∠A90°,∴∠C90°

中,∠C90°

BC2BD2CD222()22

BC

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】解方程:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察与思考:阅读下列材料,并解决后面的问题

在锐角△ABC中,∠A、∠B、∠C的对边分别是abc,过AADBCD(如图(1)),则sinB=,sinC=,即ADcsinBADbsinC,于是csinBbsinC,即,同理有:所以

即:在一个三角形中,各边和它所对角的正弦的比相等在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素.

根据上述材料,完成下列各题.

(1)如图(2),△ABC中,∠B=45°,∠C=75°,BC=60,则∠A   AC   

(2)自从去年日本政府自主自导“钓鱼岛国有化”闹剧以来,我国政府灵活应对,现如今已对钓鱼岛执行常态化巡逻.某次巡逻中,如图(3),我渔政204船在C处测得A在我渔政船的北偏西30°的方向上,随后以40海里/时的速度按北偏东30°的方向航行,半小时后到达B处,此时又测得钓鱼岛A在的北偏西75°的方向上,求此时渔政204船距钓鱼岛A的距离AB.(结果精确到0.01,2.449)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,若AC=4,BC=3,AB=5,则△ABC的内切圆半径R=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一辆货车早晨700出发,从甲地驶往乙地送货.如图是货车行驶路程ykm)与行驶时间xh)的完整的函数图像(其中点BCD在同一条直线上),小明研究图像得到了以下结论:

①甲乙两地之间的路程是100 km

②前半个小时,货车的平均速度是40 km/h

800,货车已行驶的路程是60 km

④最后40 km货车行驶的平均速度是100 km/h

⑤货车到达乙地的时间是824

其中,正确的结论是(

A.①②③④B.①③⑤C.①③④D.①③④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是半圆O的直径,C是半圆O上的一点,CF切半圆O于点C,BD⊥CF于为点D,BD与半圆O交于点E.

(1)求证:BC平分∠ABD.

(2)DC=8,BE=4,求圆的直径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】A、B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运30kg,A型机器人搬运900kgB型机器人搬运600kg所用时间相等,两种机器人每小时分别搬运多少化工原料?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,E、F分别是BC边,CD边的中点,AE、AF分别交BD于点G,H,设△AGH的面积为S1,平行四边形ABCD的面积为S2,则S1:S2的值为(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC内接于,AB是直径,OD∥AC,AD=OC.

(1)求证:四边形OCAD是平行四边形;

(2)填空:①当∠B= 时,四边形OCAD是菱形;

②当∠B= 时,AD与相切.

查看答案和解析>>

同步练习册答案