精英家教网 > 初中数学 > 题目详情
4.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为x=-1.给出四个结论:①b2>4ac;②2a+b=0;③a-b+c=0;④5a<b.其中正确结论是①④.

分析 ①由图象与x轴有交点,对称轴为x=$-\frac{b}{2a}$=-1,与y轴的交点在y轴的正半轴上,可以推出b2-4ac>0,可对①进行判断;
②由抛物线的开口向下知a<0,与y轴的交点在y轴的正半轴上得到c>0,由对称轴为x=$-\frac{b}{2a}$=-1,可以②进行分析判断;
③由x=-1时y有最大值,由图象可知y≠0,可对③进行分析判断;
④把x=1,x=-3代入解析式得a+b+c=0,9a-3b+c=0,两边相加整理得5a-b=-c<0,即5a<b,即可对④进行判断.

解答 解:①∵图象与x轴有交点,对称轴为x=$-\frac{b}{2a}$=-1,与y轴的交点在y轴的正半轴上,
又∵二次函数的图象是抛物线,
∴与x轴有两个交点,
∴b2-4ac>0,即b2>4ac,故①正确;
②∵抛物线的开口向下,
∴a<0,
∵与y轴的交点在y轴的正半轴上,
∴c>0,
∵对称轴为x=$-\frac{b}{2a}$=-1,
∴2a=b,
∴2a+b=4a,a≠0,故②错误;
③∵x=-1时y有最大值,
由图象可知y≠0,故③错误;
④把x=1,x=-3代入解析式得a+b+c=0,9a-3b+c=0,
两边相加整理得5a-b=-c<0,即5a<b,故④正确;
故答案为:①④.

点评 本题考查了二次函数的图象与系数的关系,解答此类问题的关键是掌握二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定,解题时要注意数形结合思想的运用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

14.已知命题“关于x的一元二次方程2x2+bx+2=0,当b<0时必有实数解”,能说明这个命题是假命题的一个反例可以是(  )
A.b=-1B.b=1C.b=-4D.b=5

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,PB为⊙O的切线,B为切点,直线PO交⊙于点E、F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O交于点C,连接BC,AF.
(1)求证:直线PA为⊙O的切线;
(2)试探究线段OF、OD、OP之间的等量关系,并加以证明;
(3)若BC=12,tan∠F=$\frac{1}{2}$,求cos∠ACB的值和线段PE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.二次函数y=$\frac{2}{3}$x2的图象如图所示,点A0位于坐标原点,A1,A2,A3,…,A2008在y轴的正半轴上,B1,B2,B3,…,B2008在二次函数y=$\frac{2}{3}$x2第一象限的图象上,若△A0B1A1,△A1B2A2,△A2B3A3,…,△A2007B2008A2008都为等边三角形,请计算△A0B1A1的边长=1;△A1B2A2的边长=2;△A2007B2008A2008的边长=2008.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.倾听理解:
一次数学活动课上,两个同学利用计算机软件探索函数问题,下面是他们的交流片断:

问题解决:
(1)填空:图②中,乙发现的$\frac{MN}{PM}$的比值是$\frac{1}{2}$;
(2)记图①,图②中MN为d1,d2,分别求出d1,d2与m之间的函数关系式.
拓广探索:
(3)如图③,直线x=m(m>0)分别交x轴,抛物线y=x2-4x和y=x2-3x于点P,M,N,设A,B为抛物线y=x2-4x,y=x2-3x与x轴的另一交点.
①当m为何值时,在线段OP,PM,PN,MN的四个长度中,其中有三个能围成等边三角形?
②设两条抛物线的顶点分别为K、Q,试用含有m的代数式表示以K、Q、A、P四点为顶点的四边形面积S.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图1,在平面直角坐标系中,点O为坐标原点,直线y=-x+3与x轴、y轴相交于B、C两点,抛物线y=ax2+bx+3经过点B,且与x轴负半轴相交于点A,且BO=3AO
(1)求抛物线y=ax2+bx+3的解析式;
(2)如图2,抛物线的顶点为D,对称轴交x轴于H,点P是抛物线上对称轴DH右侧一点,过P作对称轴DH的垂线PE,垂足为E.设PE长为m,DE=d,求出d与m之间的函数关系式(不要求写出自变量m的取值范围);
(3)在(2)的条件下,如图3,连接PC、BD,它们相交于点G,点F在DH上,过点F作DH的垂线交抛物线于M、N两点(点M在点N的左侧).若CG=BG,且∠MPN=90°,求点N的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.正三角形,正四边形可以铺满地面,但正十二边形和正八边形均不能铺满地面.试问,
(1)正三角形和正十二边形的结合能否铺满地面?如果可以,举例说明;如果不行,说明理由.
(2)由正四边形和正八变形组合呢?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.$\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}$的小数部分值为$\sqrt{2}$-1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.小明拿一张如图的直角三角形纸片ABC,其中∠C=90°,他将纸片沿DE折叠,使点B与点A重合,∠CAD:∠BAD=4:3,则∠CDA的度数为54°.

查看答案和解析>>

同步练习册答案