【题目】如图,直立在点处的标杆长,站立在点处的观察者从点处看到标杆顶、旗杆顶在一条直线上.已知,,,求旗杆高.
【答案】旗杆高为
【解析】
过E作EH⊥CD交CD于H点,交AB于点G,可证明四边形EFDH为长方形,可得HD的长;可证明△AEG∽△CEH,故可求得CH的长,所以旗杆CD的长即可知.
解:过E作EH⊥CD交CD于H点,交AB于点G,如下图所示:
由已知得,EF⊥FD,AB⊥FD,CD⊥FD,
∵EH⊥CD,EH⊥AB
∴四边形EFDH为矩形
∴EF=GB=DH=1.7,EG=FB=3,GH=BD=10
∴AG=AB-GB=0.8
∵EH⊥CD,EH⊥AB,
∴AG∥CH,
∴△AEG∽△CEH
∴AG:CH=EG:EH,
∵EH=EG+GH=21m,
∴CH=6.3m,
∴CD=CH+HD=7.9m
答:旗杆高DC为7.9m.
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCO的顶点B(10,8),点A,C在坐标轴上,E是BC边上一点,将△ABE沿AE折叠,点B刚好与OC边上点D重合,过点E的反比例函数y=的图象与边AB交于点F,则线段BF的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A、P、B、C是⊙O上的四点,∠APC=∠CPB=60°,过点C作CM∥BP交PA的延长线于点M.
(1)求证:△ACM≌△BCP;
(2)若PA=1,PB=2,求△PCM的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在四边形中,给出下列条件:① ② ③ ④
其中能判定四边形是平行四边形的组合是________或 ________或_________或_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,方格纸中的每个小方格都是边长为1个单位的正方形.Rt△ABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(﹣4,1),点B的坐标为(﹣1,1).
(1)先将Rt△ABC向右平移5个单位,再向下平移1个单位后得到Rt△A1B1C1.试在图中画出图形Rt△A1B1C1;
(2)将Rt△A1B1C1绕点A1顺时针旋转90°后得到Rt△A2B2C2,试在图中画出图形Rt△A2B2C2.并计算C1C2的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】函数和在第一象限内的图象如图所示,点是的图象上一动点,作轴于点,交的图象于点,作轴于点,交的图象于点,给出如下结论:①与的面积相等;②与始终相等;③四边形的面积大小不会发生变化;④,其中正确的结论序号是( )
A. ①②③ B. ②③④ C. ①③④ D. ①②④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在钝角三角形中,,,动点从点出发到点止,动点从点出发到点止,点运动的速度为,点运动的速度为,如果两点同时开始运动,那么,
若AD=AE,求值.
若△ADE和△ABC相似,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在由边长为1的单位正方形组成的网格中,按要求画出坐标系及△A1B1C1及△A2B2C2;
(1)若点A、C的坐标分别为(﹣3,0)、(﹣2,3),请画出平面直角坐标系并指出点B的坐标;
(2)画出△ABC关于y轴对称再向上平移1个单位后的图形△A1B1C1;
(3)以图中的点D为位似中心,将△A1B1C1作位似变换且把边长放大到原来的两倍,得到△A2B2C2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边由长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x米.
(1)若苗圃园的面积为72平方米,求x;
(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com