精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系xOy中,已知抛物线(k为常数).

(1)若抛物线经过点(1,k2),求k的值;

(2)若抛物线经过点(2k,y1)和点(2,y2),且y1>y2,求k的取值范围;

(3)若将抛物线向右平移1个单位长度得到新抛物线,当1≤x≤2时,新抛物线对应的函数有最小值,求k的值.

【答案】(1);(2)k>1;(3)13.

【解析】

(1)把(1,k2)代入抛物线解析式中并求解即可;

(2)将点分别代入抛物线解析式中,由y1>y2列出关于k的不等式,求解即可;

(3)先求出新抛物线的解析式,然后分1≤k≤2,k>2以及k<1三种情况讨论,根据二次函数的顶点及增减性,分别确定三种情况下各自对应的最小值,然后列出方程并求出满足题意的k值即可.

解:(1)把点代入抛物线,得

解得

(2)把点代入抛物线,得

把点代入抛物线,得

解得

(3)抛物线解析式配方得

将抛物线向右平移1个单位长度得到新解析式为

时,对应的抛物线部分位于对称轴右侧,的增大而增大,

时,

,解得

都不合题意,舍去;

时,

解得

时,对应的抛物线部分位于对称轴左侧,的增大而减小,

时,

解得(舍去)

综上,或3.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,等边ABC的边长为3,分别以顶点BAC为圆心,BA长为半径作,我们把这三条弧所组成的图形称作莱洛三角形,显然莱洛三角形仍然是轴对称图形,设点l为对称轴的交点.

(1)如图2,将这个图形的顶点A与线段MN作无滑动的滚动,当它滚动一周后点A与端点N重合,则线段MN的长为

(2)如图3,将这个图形的顶点A与等边DEF的顶点D重合,且ABDEDE=2π,将它沿等边DEF的边作无滑动的滚动当它第一次回到起始位置时,求这个图形在运动过程中所扫过的区域的面积;

(3)如图4,将这个图形的顶点BO的圆心O重合,O的半径为3,将它沿O的圆周作无滑动的滚动,当它第n次回到起始位置时,点I所经过的路径长为 (请用含n的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°AC=8mBC=6m,点PC点出发以2m/s的速度向终点A匀速移动,同时点Q由点B出发以1m/s的速度向终点C匀速移动,当一个点到达终点时另一个点也随之停止移动.

1)经过几秒PCQ的面积为ACB的面积的

2)经过几秒,PCQACB相似?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,BDACDCEABE

1)求证:△ABD∽△ACE

2)连接DE,求证:∠ADE=∠ABC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=﹣x2+bx+c,函数值y与自变量x之间的部分对应值如下表:

x

4

1

0

1

y

2

1

2

7

1)此二次函数图象的对称轴是直线,此函数图象与x轴交点个数为   

2)求二次函数的函数表达式;

3)当﹣5x<﹣1时,请直接写出函数值y的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市为微波炉生产厂代销A型微波炉,售价是每台700元,每台可获利润40%.

1)超市销售一台A型微波炉可获利多少元?

22019年元旦,超市决定降价销售该微波炉,已知若按原价销售,每天可销售10台,若每台每降价5元,每天可多销1台,同时超市和微波炉生产厂协商,使现有微波炉的成本价,每台减少20元,但生产厂商要求超市尽量增加销售,这样,2019元旦当天超市销售A型微波炉共获利3600元,求超市在元旦当天销售A型微波炉的价格.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2019年女排世界杯中,中国女排以11站全胜且只丢3局的成绩成功卫冕本届世界杯冠军.某校七年级为了弘扬女排精神,组建了排球社团,通过测量同学们的身高(单位:cm),并绘制了如下两幅不完整的统计图,请结合图中提供的信息,解答下列问题.

(1)填空:样本容量为___a=___

(2)把频数分布直方图补充完整;

(3)若从该组随机抽取1名学生,估计这名学生身高低于165cm的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=a,AD=b,P是对角线BD上的一个动点(点P不与BD重合),连接AP并延长交射线BC于点Q

1)当APBD时,求ABQ的面积(用含ab的代数式表示).

2)若点MAD边的中点,连接MPBC于点N,证明:点N也为线段BQ的中点.

3)如图,当为何值时,ADPBPQ的面积之和最小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c(a≠0对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①abc<0;②4ac<b2;③方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;④3a+c>0;⑤当y≥0时,x的取值范围是﹣1≤x≤3.其中结论正确的个数是(  )

A. 1个B. 2个C. 3D. 4个

查看答案和解析>>

同步练习册答案