【题目】甲骑电动车、乙骑摩托车都从M地出发,沿一条笔直的公路匀速前往N地,甲先出发一段时间后乙再出发.甲,乙两人到达N地后均停止骑行,已知M,N两地相距km,设甲行驶的时间为x(h),甲、乙两人之同的距离为y(km),表示y与x函数关系的图象如图所示.请你解决以下问题:
(1)求线段BC所在直线的函数表达式;
(2)分别求甲,乙的速度;
(3)填空:点A的坐标是 .
【答案】(1)y=20x﹣;(2)甲的速度为30 km/h,乙的速度为50km/h;(3)(,10).
【解析】
(1)根据函数图象中的数据可以求得线段BC所在直线的函数表达式;
(2)根据题意和函数图象中的数据可以求得甲和乙的速度;
(3)由(2)的结论可以求得点A的坐标并写出点A表示的实际意义
解:(1)设线段BC所在直线的函数表达式为y=kx+b(k≠0),
∵,在直线BC上,
,得,
即线段BC所在直线的函数表达式为y=20x﹣;
(2)设甲的速度为m km/h,乙的速度为n km/h,
,得,
故甲的速度为30 km/h,乙的速度为50km/h,
(3)点A的纵坐标是:,
即点A的坐标为(,10).
故答案为(,10)
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC是边长为3的等边三角形,点D是边BC上的一点,且BD=1,以AD为边作等边△ADE,过点E作EF∥BC,交AC于点F,连接BF,则下列结论中①△ABD≌△BCF;②四边形BDEF是平行四边形;③S四边形BDEF=;④S△AEF=.其中正确的有( )
A. 1个B. 2个C. 3个D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线与轴交于点,,与轴交于点.是直线上的一个动点,直线与抛物线交于另一点.
(1)求这个抛物线的解析式;
(2)如图,当点在线段上时,连接,若,求点的坐标;
(3)若,请直接写出点的横坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数学活动课上,某学习小组对有一内角为120°的平行四边形ABCD(∠BAD=120°)进行探究:将一块含60°的直角三角板如图放置在平行四边形ABCD所在平面内旋转,且60°角的顶点始终与点C重合,较短的直角边和斜边所在的两直线分别交线段AB,AD于点E,F(不包括线段的端点).
(1)初步尝试
如图1,若AD=AB,求证:①△BCE≌△ACF,②AE+AF=AC;
(2)类比发现
如图2,若AD=2AB,过点C作CH⊥AD于点H,求证:AE=2FH;
(3)深入探究
如图3,若AD=3AB,探究得:的值为常数t,则t=____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一座抛物线型拱桥,在正常水位时水面的宽为18米,拱顶离水面的距离为9米,建立如图所示的平面直角坐标系.
(1)求此抛物线的解析式;
(2)一艘货船在水面上的部分的横断面是矩形.
①如果限定矩形的长为12米,那么要使船通过拱桥,矩形的高不能超过多少米?
②若点,都在抛物线上,设,当的值最大时,求矩形的高.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了了解某中学学生的身高情况,随机对该校男、女生的身高进行抽样调查.抽取的样本中,男、女生的人数相同,根据所得数据绘制成如图所示的统计图表.
组别 | 男女生身高(cm) |
A | 150≤x<155 |
B | 155≤x<160 |
C | 160≤x<165 |
D | 165≤x<170 |
E | 170≤x<175 |
根据图表中提供的信息,回答下列问题:
(1)在样本中,男生身高的中位数落在__________组(填组别序号),女生身高在B组的有__________人;
(2)在样本中,身高在170≤x<175之间的共有__________人,人数最多的是__________组(填组别序号);
(3)已知该校共有男生500人,女生480人,请估计身高在160≤x<170之间的学生有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为检测“停课不停学”期间九年级学生的复习情况,进行了中考数学模拟测试并从中随机抽取了部分学生的测试成绩分成个小组,根据每个小组的人数绘制如图所示的尚不完整的频数分布直方图.
请根据信息回答下列问题:
若成绩在分的频率为,请计算抽取的学生人数并补全频数分布直方图;
在此次测试中,抽取学生成绩的中位数在______ 分数段中;
若该校九年级共有名学生,成绩在分以上的(含分)为优秀,请通过计算说明,大约有多少名学生在本次测试中数学成绩为优秀.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.
(1)判断直线DE与⊙O的位置关系,并说明理由;
(2)若AC=3,BC=4,OA=1,求线段DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴交于点A和点B(3,0),与轴交于点C(0,3).
(1)求抛物线的解析式;
(2)若点M是抛物线在轴下方上的动点,过点M作MN//轴交直线BC于点N,求线段MN的最大值;
(3)在(2)的条件下,当MN取最大值时,在抛物线的对称轴上是否存在点P,使△PBN是等腰三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com