精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线轴的负半轴交于点,与轴交于点,连接,点分别是直线与抛物线上的点,若点围成的四边形是平行四边形,则点的坐标为__________.

【答案】

【解析】

根据二次函数与x轴的负半轴交于点,与轴交于点.直接令x=0和y=0求出A,B的坐标.再根据平行四边形的性质分情况求出点E的坐标.

由抛物线的表达式求得点的坐标分别为.

由题意知当为平行四边形的边时,,且

∴线段可由线段平移得到.

∵点在直线上,①当点的对应点为时,如图,需先将向左平移1个单位长度,

此时点的对应点的横坐标为,将代入

,∴.

②当点A的对应点为时,同理,先将向右平移2个单位长度,可得点的对应点的横坐标为2

代入,∴

为平行四边形的对角线时,可知的中点坐标为

在直线上,

∴根据对称性可知的横坐标为,将代入

,∴.

综上所述,点的坐标为.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,对称轴为x1的抛物线经过A(﹣10),B2,﹣3)两点.

1)求抛物线的解析式;

2P是抛物线上的动点,连接PO交直线AB于点Q,当QOP中点时,求点P的坐标;

3C在直线AB上,D在抛物线上,E在坐标平面内,以BCDE为顶点的四边形为正方形,直接写出点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分. 如图,甲在O点正上方1 m的点P发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数表达式:,已知点O与球网的水平距离为5 m,球网的高度1.55 m.

1)当时,求h的值,并通过计算判断此球能否过网;

2)若甲发球过网后,羽毛球飞行到与点O的水平距离为7m,离地面的高度为Q处时,乙扣球成功,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线与函数的图象交于两点,且点的坐标为

1)求的值;

2)已知点,过点作平行于轴的直线,交直线于点,交函数的图象于点

①当时,求线段的长;

②若,结合函数的图象,直接写出的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数的图象与x轴交于A(3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.

(1)请直接写出D点的坐标.

(2)求二次函数的解析式.

(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,以点为圆心画圆,与轴交于;两点,与轴交于两点,当时,的取值范围是____________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,是等边三角形,APBP的延长线分别交边CD于点EF,联结ACCPACBF相交于点H,下列结论中错误的是(

A.AE=2DEB.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以矩形ABCD的边CD为直径作⊙O,点EAB 的中点,连接CE交⊙O于点F,连接AF并延长交BC于点H

1)若连接AO,试判断四边形AECO的形状,并说明理由;

2)求证:AH是⊙O的切线;

3AB6CH2,则AH的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,反比例函数y1x0)的图象与y2x0)的图象关于x轴对称,RtAOB的顶点AB分别在y1x0)和y2x0)的图象上.若OBAB,点B的纵坐标为﹣2,则点A的坐标为_____

查看答案和解析>>

同步练习册答案