【题目】如图,在四边形ABCD中,AD∥BC,AB=BC,对角线AC、BD交于点O,BD平分∠ABC,过点D作DE⊥BC,交BC的延长线于点E,连接OE.
(1)求证:四边形ABCD是菱形;
(2)若DC=2,AC=4,求OE的长.
【答案】(1)证明见解析;(2)4.
【解析】
(1)由AD∥BC,BD平分∠ABC,可得AD=AB,结合AD∥BC,可得四边形ABCD是平行四边形,进而,可证明四边形ABCD是菱形,
(2)由四边形ABCD是菱形,可得OC=AC=2,在Rt△OCD中,由勾股定理得:OD=4,根据“在直角三角形中,斜边上的中线等于斜边的一半”,即可求解.
(1)证明:∵AD∥BC,
∴∠ADB=∠CBD,
∵BD平分∠ABC,
∴∠ABD=∠CBD,
∴∠ADB=∠ABD,
∴AD=AB,
∵AB=BC,
∴AD=BC,
∵AD∥BC,
∴四边形ABCD是平行四边形,
又∵AB=BC,
∴四边形ABCD是菱形;
(2)解:∵四边形ABCD是菱形,
∴AC⊥BD,OB=OD,OA=OC=AC=2,
在Rt△OCD中,由勾股定理得:OD==4,
∴BD=2OD=8,
∵DE⊥BC,
∴∠DEB=90°,
∵OB=OD,
∴OE=BD=4.
科目:初中数学 来源: 题型:
【题目】已知边长为6的等边中,是高所在直线上的一个动点,连接,将线段绕点顺时针旋转得到,连接,则在点运动的过程中,当线段长度的最小值时,的长度为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=,∠B=,AC=1,BC=,AB=2,AC在直线l上,将△ABC绕点A顺时针转到位置①可得到点P1,此时AP1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=2+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=3+…,按此顺序继续旋转,得到点P2016,则AP2016=( )
A. 2016+671B. 2016+672
C. 2017+671D. 2017+672
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线l//AB,l与AB之间的距离为2.C、D是直线l上两个动点(点C在D点的左侧),且AB=CD=5.连接AC、BC、BD,将△ABC沿BC折叠得到△A′BC.下列说法:①四边形ABDC的面积始终为10;②当A′与D重合时,四边形ABDC是菱形;③当A′与D不重合时,连接A′、D,则∠CA′D+∠BC A′=180°;④若以A′、C、B、D为顶点的四边形为矩形,则此矩形相邻两边之和为3或7.其中正确的是( )
A. ①②③④B. ①③④C. ①②④D. ①②③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,BD为一条对角线,AD∥BC,AD=2BC,∠ABD=90°,E为AD的中点,连接BE.
(1)求证:四边形BCDE为菱形;
(2)连接AC,若AC平分∠BAD,AB=2,求菱形BCDE的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC 中,AB=3,AC=4,BC=5,P 为边 BC 上一动点,PE⊥AB 于 E,PF⊥AC于 F,M 为 EF 中点,则 AM 的最小值为( )
A.1B.1.3C.1.2D.1.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】要建一个如图所示的面积为300 的长方形围栏,围栏总长50m,一边靠墙(墙长25m),
(1)求围栏的长和宽;
(2)能否围成面积为400 的长方形围栏?如果能,求出该长方形的长和宽,如果不能请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个不透明的盒子中装有个形状大小完全一样的小球,上面分别有标号,,,用树状图或列表的方法解决下列问题:
将球搅匀,从盒中一次取出两个球,求其两标号互为相反数的概率.
将球搅匀,摸出一个球将其标号记为,放回后搅匀后再摸出一个球,将其标号记为.求直线不经过第三象限的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A在第二象限,以A为顶点的抛物线经过原点,与x轴负半轴交于点B,对称轴为直线x=﹣1,点C在抛物线上,且位于点A、B之间(C不与A、B重合).若△ABC的周长为m,四边形AOBC的周长为 (用含m的式子表示).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com