精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,在△ABC中,BC=AC,以BC为直径的⊙O与边AB相交于点DDEAC,垂足为点E.

(1)求证:点DAB的中点.

(2)判断DE与⊙O的位置关系,并证明你的结论.

(3)若⊙O的半径为5AB=12,求DE的长.

【答案】(1)证明见解析;(2)DE与⊙O相切,证明见解析;(3)DE=4.8.

【解析】

1)连接CD,根据直径所对的圆周角是直角可得:CDAB,再根据三线合一即可证出;

2)连接OD,根据中位线的性质可得:ODAC,再根据平行线的性质可得ODDE,从而证出DE与⊙O相切;

3)过点DDFBCF,由三线合一可知:CD平分∠ACBBD=AB=6,根据勾股定理可求出CD,根据△BDC的面积的两种求法列方程,即可求出DF,从而求出DE.

解:(1)连接CD

BC为⊙O的直径

CDAB

BC=AC

AD=BD

即点DAB的中点

(2) DE与⊙O相切 ,理由如下

连接OD

AD=BDOB=OC

ODAC

DEAC

ODDE

DE与⊙O相切

(3)过点DDFBCF

BC=ACCDAB

CD平分∠ACBBD=AB=6

DE=DF

∵⊙O的半径为5

BC=10

根据勾股定理可得:CD=

SBDC=BD·CD=BC·DF

×6×8=×10·DF

解得:DF=4.8

DE= DF=4.8

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知实数ab满足ab1a2ab+10,当2≤x≤3时,二次函数yax12+1a≠0)的最大值是3,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法正确的是(  )

A.一颗质地均匀的骰子已连续抛投了2015次,其中抛掷出5点的次数最少,则第2016次一定抛掷出5

B.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖

C.天气预报说明天下雨的概率是,所以明天将有一半时间在下雨

D.在同一年出生的367名学生中,至少有两人的生日是同一天

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2017年的淘宝双十一,开场11秒后,销售额突破十亿,3分钟破百亿,最终成交额定格在1682亿元上,在今年的双十一前夕,某企业生产一种必需商品作为双十一的主打商品,经过之前的长期市场调查后发现,商品的月总产量稳定在600件,商品的月销售量a(件)由固定销售量与浮动销售量两个部分组成,其中固定销售量保持不变,浮动销售量与售价x(元/件)(x≤10)成反比,且得到了如下表格中的信息:

售价x(元/件)

5

8

月销售量Q(件)

580

400

1)求Q关于x的函数关系式;

2)若生产的所有商品正好销售完,求售价x

3)求售价x为多少时,月销售额最大,并求这个最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】水果店张阿姨以每斤4元的价格购进某种水果若干斤,然后以每斤6元的价格出售,每天可售出150斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出30斤,为保证每天至少售出360斤,张阿姨决定降价销售.

(1)若将这种水果每斤的售价降低x元,则每天的销售量是   斤(用含x的代数式表示);

(2)销售这种水果要想每天盈利450元,张阿姨需将每斤的售价降低多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABN中,∠B =90°,点MAB上的动点(不与A,B两点重合),点CBN延长线上的动点(不与点N重合),且AM=BCCN=BM,连接CMAN交于点P.

(1)在图1中依题意补全图形;

(2)小伟通过观察、实验,提出猜想:在点MN运动的过程中,始终有∠APM=45°.小伟把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的一种思路:

要想解决这个问题,首先应想办法移动部分等线段构造全等三角形,证明线段相等,再构造平行四边形,证明线段相等,进而证明等腰直角三角形,出现45°的角,再通过平行四边形对边平行的性质,证明∠APM=45°.

他们的一种作法是:过点MAB下方作MDAB于点M,并且使MD=CN.通过证明△AMDCBM,得到AD=CM,再连接DN,证明四边形CMDN是平行四边形,得到DN=CM,进而证明△ADN是等腰直角三角形,得到∠DNA=45°.又由四边形CMDN是平行四边形,推得∠APM=45°.使问题得以解决.

请你参考上面同学的思路,用另一种方法证明∠APM=45°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是  

A. 55° B. 60° C. 65° D. 70°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,APBC是⊙O上的四个点,∠APC=∠CPB60°.

1)求证:PA+PBPC

2)若BC,点P是劣弧AB上一动点(异于AB),PAPB是关于x的一元二次方程x2mx+n0的两根,求m的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,二次函数的图像与轴交于两点,与轴交于点,其顶点为,连接,过点轴的垂线.

1)求点的坐标;

2)直线上是否存在点,使的面积等于的面积的3倍?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案