精英家教网 > 初中数学 > 题目详情
5.如图,一次函数y=3x+3的图象与x轴交于点A,与y轴交于点B,二次函数y=ax2+bx+c的图象经过点A,B,C,且点C的坐标为(3,0).
(1)求这个二次函数的表达式;
(2)在这个二次函数图象的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,直接写出符合条件的点Q的坐标;若不存在,请说明理由.

分析 (1)由直线y=3x+3交x轴于A点,交y轴于B点,即可求得点A与B的坐标,又由过A、B两点的抛物线交x轴于另一点C(3,0),利用两点式法即可求得抛物线的解析式;
(2)分别从AB=BQ,AQ=BQ,AB=AQ三方面去分析,注意抓住线段的求解方法,借助于方程求解即可求得答案.

解答 解:(1)∵当x=0时,y=3,
当y=0时,x=-1,
∴A(-1,0),B(0,3),
∵C(3,0),
设抛物线的解析式为y=a(x+1)(x-3),
∴3=a×1×(-3),
∴a=-1,
∴此抛物线的解析式为y=-(x+1)(x-3)=-x2+2x+3;

(2)存在.
∵抛物线的对称轴为:直线x=$\frac{-1+3}{2}$=1,
∴如图对称轴与x轴的交点即为Q1
∵OA=OQ1,BO⊥AQ1
∴当Q1B=AB时,设Q(1,q),
∴1+(q-3)2=10,
∴q=0,或q=6,
∴Q(1,0)或Q(1,6)(在直线AB上,舍去).
当Q2A=Q2B时,设Q2的坐标为(1,m),∴22+m2=12+(3-m)2
∴m=1,
∴Q2(1,1);
当Q3A=AB时,设Q3(1,n),
∴22+n2=12+32
∴n=±$\sqrt{6}$,
∴Q3(1,$\sqrt{6}$),Q4(1,-$\sqrt{6}$).
∴符合条件的Q点坐标为Q1(1,0),Q2(1,1),Q3(1,$\sqrt{6}$),Q4(1,-$\sqrt{6}$).

点评 此题考查了待定系数法求二次函数的解析式与等腰三角形的性质等知识.此题难度适中,注意分类讨论思想,方程思想与数形结合思想的应用是解此题的关键,还要注意别漏解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

2.已知∠α=52°,则它的余角等于38°;若∠β的补角是115°,则∠β=68°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.已知线段AB=acm,点M(不与A、B重合)为线段AB上任意一点,点E、F分别为AM、BM的中点.
试用含a的代数式表示线段EF,并说明线段EF的长与点M的位置是否有关.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图所示,△ABC是等腰直角三角形,CA=CB,∠ACB=90°,AD是BC边上的中线,过C作AD的垂线,垂足为F,交AB于点G,过点B作BE⊥BC,交CG的延长线于点E,连接DG.
(1)求证:BE=CD;
(2)求证:GD=GE.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知△ABC和△AEF中,AB=AC,AE=AF,∠BAC=∠EAF,BE、CF交于M,连接MA.
(1)如图1,若∠BAC=60°,求∠CMB的度数;
(2)如图2,若∠BAC=90°,则∠CMB=90°;
(3)如图3,若∠BAC=a,则∠AMC=90°+$\frac{1}{2}$α.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.两个城镇A、B与两条公路ME,MF位置如图所示,其中ME是东西方向的公路.现电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A、B的距离必须相等,到两条公路ME,MF的距离也必须相等,且在∠FME的内部.
(1)那么点C应选在何处?请在图中,用尺规作图找出符合条件的点C.(不写已知、求作、作法,只保留作图痕迹)
(2)若CM=2($\sqrt{3}$+1)km,在M处测得点C位于点M的北偏东60°方向,求点C到公路ME的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,在直角梯形ABCD中,AB∥CD,∠A=90°,AB=2,AD=5,P是AD上一动点(不与A、D重合),PE⊥BP,PE交DC于点E.
(1)△ABP与△DPE是否相似?请说明理由;
(2)设AP=x,DE=y,求y与x之间的函数关系式,并指出自变量x的取值范围;
(3)请你探索在点P运动的过程中,四边形ABED能否构成矩形?如果能,求出AP的长;如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.已知二次函数的图象经过A(3,0),B(0,-3),C(-2,5)三点.
(1)求这个函数的解析式及函数图象顶点P的坐标;
(2)画出二次函数的图象(要列表画图)并求四边形OBPA的面积.
(3)观察图象:x为何值时,y>0,y<0?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.求x的值:(x+3)2=36.

查看答案和解析>>

同步练习册答案