精英家教网 > 初中数学 > 题目详情

【题目】(1)如图1,若AB∥CD,则∠B+∠D=∠E,你能说明理由吗?

(2)反之,若∠B+∠D=∠E,直线AB与CD有什么位置关系?

(3)若将点E移至图2的位置,此时∠B,∠D,∠E之间有什么关系?

(4)若将点E移至图3的位置,此时∠B,∠D,∠E之间的关系又如何?

(5)在图4中,AB∥CD,∠E+∠G与∠B+∠F+∠D之间有何关系?

【答案】(1)理由见解析

(2)AB∥CD.

(3)∠B+∠D+∠E=360°.

(4)∠B=∠D+∠E.

(5)∠E+∠G=∠B+∠F+∠D.

【解析】试题分析:已知AB∥CD,连接AB、CD的折线内折或外折,或改变E点位置、或增加折线的条数,通过适当地改变其中的一个条件,就能得出新的结论,给我们创造性的思考留下了极大的空间,解题的关键是过E点作AB(或CD)的平行线,把复杂的图形化归为基本图形.

试题解析:(1)理由:过点E作EF∥AB,

∴∠B=∠BEF.

∵CD∥AB,∴CD∥EF.∴∠D=∠DEF.

∴∠B+∠D=∠BEF+∠DEF=∠BED.

(2)若∠B+∠D=∠E,由EF∥AB,得∠B=∠BEF,
∵∠E=∠BEF+∠DEF=∠B+∠D,
∴∠D=∠DEF,∴EF∥CD,
∴AB∥CD;

(3) 若将点E移至图2所示位置,过EEF∥AB,
∴∠BEF+∠B=180°,

∵EF∥CD,

∴∠D+∠DEF=180°,

∠B+∠D+∠E=360°.

(4)∵AB∥CD,

∴∠B=∠BFD,
∵∠D+∠E=∠BFD,
∴∠D+∠E=∠B;

(5) 如图,作EM∥AB,FN∥AB,GP∥AB

AB∥CD,

∴∠B=∠1,∠2=∠3,∠4=∠5,∠6=∠D

∴∠1+∠2+∠5+∠6=∠B+∠3+∠4+∠D

∴∠1+∠2=∠E,5+∠6=∠G,∠3+∠4=∠F

E+∠G=∠B+∠F+∠D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】阅读材料,回答问题:

若整数能被4整除,则称整数完美数”.例如:8能被4整除,所以8完美数;一44的倍数,所以一4也是完美数

11015之间的完美数_______

是整数,则 ________ “完美数(填:不是);

2)若任意四个连续的完美数中最小数的是4是整数),则它与四个数中最大数的积是32的倍数吗?请说明理由;

3)当是正整数时,试说明:一定是完美数”.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,排球运动员站在点O处练习发球,将球从D点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x﹣k)2+h.已知球与D点的水平距离为6m时,达到最高2.6m,球网与D点的水平距离为9m.高度为2.43m,球场的边界距O点的水平距离为18m,则下列判断正确的是( )

A.球不会过网
B.球会过球网但不会出界
C.球会过球网并会出界
D.无法确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,点H是BC的中点,作射线AH,在线段AH及其延长线上分别取点E,F,连结BE,CF.

(1)请你添加一个条件,使得△BEH≌△CFH,你添加的条件是,并证明.
(2)在问题(1)中,当BH与EH满足什么关系时,四边形BFCE是矩形,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明的盒子中装有颜色不同的8个小球,其中红球3个,黑球5个.

(1)先从袋中取出m(m>1)个红球,再从袋中随机摸出1个球,将摸出黑球记为事件A.请完成下列表格:

事件A

必然事件

随机事件

m的值

(2)先从袋中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个球是黑球的概率是,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB8BC4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为(

A.6B.8C.10D.12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义一种对正整数n“F”运算:①当n为奇数时,F(n)=3n+1;②当n为偶数时,F(n)=(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:

n=13,则第2018“F”运算的结果是(  )

A. 1 B. 4 C. 2018 D. 42018

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(背景知识)研究平面直角坐标系,我们可以发现一条重要的规律:若平面直角坐标系上有两个不同的点,则线段AB的中点坐标可以表示为

(简单应用)如图1,直线ABy轴交于点,与x轴交于点,过原点O的直线L分成面积相等的两部分,请求出直线L的解析式;

(探究升级)小明发现若四边形一条对角线平分四边形的面积,则这条对角线必经过另一条对角线的中点

如图2,在四边形ABCD中,对角线ACBD相交于点O试说明

(综合运用)如图3,在平面直角坐标系中,若OC恰好平分四边形OACB的面积,求点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知∠AOB90°,OC为一条射线,OEOF分别平分∠AOC,∠BOC,那么∠EOF 的度数为_____________

查看答案和解析>>

同步练习册答案