【题目】(背景知识)研究平面直角坐标系,我们可以发现一条重要的规律:若平面直角坐标系上有两个不同的点、,则线段AB的中点坐标可以表示为
(简单应用)如图1,直线AB与y轴交于点,与x轴交于点,过原点O的直线L将分成面积相等的两部分,请求出直线L的解析式;
(探究升级)小明发现“若四边形一条对角线平分四边形的面积,则这条对角线必经过另一条对角线的中点”
如图2,在四边形ABCD中,对角线AC、BD相交于点O,试说明;
(综合运用)如图3,在平面直角坐标系中,,,若OC恰好平分四边形OACB的面积,求点C的坐标.
【答案】[简单应用][探究升级][综合运用]
【解析】
简单应用:先判断出直线L过线段AB的中点,再求出线段AB的中点,最后用待定系数法即可得出结论;
探究升级:先判断出,进而判断出≌,即可得出结论;
综合运用:借助“探究升级”的结论判断出直线OC过线段AB的中点,进而求出直线OC的解析式,最后将点C坐标代入即可得出结论.
解:简单应用:
直线L将分成面积相等的两部分,
直线L必过相等AB的中点,
设线段AB的中点为E,
,,
,
,
直线L过原点,
设直线L的解析式为,
,
,
直线L的解析式为;
探究升级:
如图2,
过点A作于F,过点C作于G,
,,
,
,
,
在和中,
,
≌,
;
综合运用:如图3,
由探究升级知,若四边形一条对角线平分四边形的面积,则这条对角线必经过另一条对角线的中点,
恰好平分四边形OACB的面积,
过四边形OACB的对角线OA的中点,
连接AB,设线段AB的中点为H,
,,
,设直线OC的解析式为,,
,
,
直线OC的解析式为,
点在直线OC上,
,
,
科目:初中数学 来源: 题型:
【题目】如图所示,已知∠1+∠2=180°,∠3=∠B,
求证:∠AED=∠ACB.
证明:∠1+∠2=180°(已知),∠1+∠4=180°( ),
∴∠2= ( ),
∴AB∥EF( ),
∴∠3= ( ),
∵∠3=∠B(已知),
∴∠B= (等量代换),
∴DE∥BC( ),
∴∠AED=∠ACB( ).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,若AB∥CD,则∠B+∠D=∠E,你能说明理由吗?
(2)反之,若∠B+∠D=∠E,直线AB与CD有什么位置关系?
(3)若将点E移至图2的位置,此时∠B,∠D,∠E之间有什么关系?
(4)若将点E移至图3的位置,此时∠B,∠D,∠E之间的关系又如何?
(5)在图4中,AB∥CD,∠E+∠G与∠B+∠F+∠D之间有何关系?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,AD平行BC,∠ABC=90°,AD=2,AB=6,以AB为直径的半⊙O 切CD于点E,F为弧BE上一动点,过F点的直线MN为半⊙O的切线,MN交BC于M,交CD于N,则△MCN的周长为( )
A.9
B.10
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD边长为4cm,以正方形的一边BC为直径在正方形ABCD内作半圆,过A作半圆的切线,与半圆相切于F点,与DC相交于E点,则△ADE的面积( )
A.12
B.24
C.8
D.6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:在平面直角坐标系中,点A、B的坐标分别是(a,0),(b,0)且+|b-2|=0.
(1)求a、b的值;
(2)在y轴上是否存在点C,使三角形ABC的面积是12?若存在,求出点C的坐标;若不存在,请说明理由.
(3)已知点P是y轴正半轴上一点,且到x轴的距离为3,若点P沿平行于x轴的负半轴方向以每秒1个单位长度平移至点Q,当运动时间t为多少秒时,四边形ABPQ的面积S为15个平方单位?写出此时点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,数学实践活动小组要测量学校附近楼房CD的高度,在水平地面A处安置测倾器测得楼房CD顶部点D的仰角为45°,向前走20米到达A′处,测得点D的仰角为67.5°,已知测倾器AB的高度为1.6米,则楼房CD的高度约为(结果精确到0.1米, ≈1.414)( )
A.34.14米
B.34.1米
C.35.7米
D.35.74米
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与x轴交于点(﹣1,0)和(3,0),与y轴交于点(0,﹣3)则此抛物线对此函数的表达式为( )
A.y=x2+2x+3
B.y=x2﹣2x﹣3
C.y=x2﹣2x+3
D.y=x2+2x﹣3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,CE平分∠ACB,交AB于点E.
(1)求证:AC平分∠DAB;
(2)求证:△PCE是等腰三角形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com