【题目】阅读材料,回答问题:
若整数能被4整除,则称整数为“完美数”.例如:8能被4整除,所以8是“完美数”;一4是4的倍数,所以一4也是“完美数”。
(1)10到15之间的“完美数”是_______;
若,是整数,则 ________ “完美数”(填:“是”或“不是”);
(2)若任意四个连续的“完美数”中最小数的是4(是整数),则它与四个数中最大数的积是32的倍数吗?请说明理由;
(3)当是正整数时,试说明:一定是“完美数”.
【答案】(1)12,是;(2)是;(3)见解析.
【解析】
(1)10到15之间的数能被4整除的数只有12,可得10到15之间的“完美数”是12;(2)根据题意表示出这四个连续的“完美数”中最大数的是4(+3),再求得这四个连续的“完美数”中最小数与最大数的积为,由此即可解答;(3)因为=, n是正整数,即可判定和都是偶数,所以能被4整除,结论得证.
(1)∵10到15之间的数能被4整除的数只有12,
∴10到15之间的“完美数”是12;
∵=4mn(,是整数),4mn能被4整除,
∴ 是“完美数”;
故答案为:12,是;
(2)∵任意四个连续的“完美数”中最小数的是4(是整数),
∴这四个连续的“完美数”中最大数的是4(+3),
∴这四个连续的“完美数”中最小数与最大数的积为4n·4(+3)=,
∵n是整数,
∴是偶数,
∴这四个连续的“完美数”中最小数与最大数的积是32的倍数;
(3)=,
∵n是正整数,
∴和都是偶数,
∴能被4整除,
即是“完美数”.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠B=90°,tan∠C= ,AB=6cm.动点P从点A开始沿边AB向点B以1cm/s的速度移动,动点Q从点B开始沿边BC向点C以2cm/s的速度移动.若P,Q两点分别从A,B两点同时出发,在运动过程中,△PBQ的最大面积是( )
A.18cm2
B.12cm2
C.9cm2
D.3cm2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,菱形ABCD的顶点A,B的坐标分别为(﹣6,0),(4,0),点D在y轴上.
(1)求点C的坐标;
(2)求对角线AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,G为CD边中点,连接AG并延长,分别交对角线BD于点F,交BC边延长线于点E.若FG=2,则AE的长度为( )
A. 6B. 8
C. 10D. 12
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB=DC,AD=BC,E,F在DB上两点且BF=DE,若∠AEB=120°,∠ADB=30°,则∠BCF= ( )
A. 150° B. 40° C. 80° D. 90°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知BC∥DE,BF平分∠ABC,DC平分∠ADE,则下列结论:①∠ACB=∠E;②DF平分∠ADC;③∠BFD=∠BDF;④∠ABF=∠BCD,其中正确的有( )
A. 4个B. 3个C. 2个D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,∠ABC=90°,AB=4cm,BC=8cm,E、F是AD,DC的中点,连接EF、BE、BF,已知四边形ABCD的面积为36,△DEF的面积是△DAC面积的,求△BEF的面积_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,已知∠1+∠2=180°,∠3=∠B,
求证:∠AED=∠ACB.
证明:∠1+∠2=180°(已知),∠1+∠4=180°( ),
∴∠2= ( ),
∴AB∥EF( ),
∴∠3= ( ),
∵∠3=∠B(已知),
∴∠B= (等量代换),
∴DE∥BC( ),
∴∠AED=∠ACB( ).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,若AB∥CD,则∠B+∠D=∠E,你能说明理由吗?
(2)反之,若∠B+∠D=∠E,直线AB与CD有什么位置关系?
(3)若将点E移至图2的位置,此时∠B,∠D,∠E之间有什么关系?
(4)若将点E移至图3的位置,此时∠B,∠D,∠E之间的关系又如何?
(5)在图4中,AB∥CD,∠E+∠G与∠B+∠F+∠D之间有何关系?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com