【题目】如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作.当与正方形ABCD的边相切时,BP的长为( )
A. 3B. C. 3或D. 不确定
【答案】C
【解析】
分两种情况讨论:点⊙P与直线CD相切时,PC=PM,设BP=x,利用勾股定理求出x值即可得答案;当⊙P与直线AD相切,设切点为K,连接PK,则PK⊥AD,PK=PM,可得四边形PCDK是矩形,则PM=PK=CD,根据勾股定理求出BP的长即可.
如图,点⊙P与直线CD相切时,设BP=x,则PM=PC=8-x,
∴PM2=BP2+,即(8-x)2=x2+42,
解得:x=3.
如图,当⊙P与直线AD相切时,设切点为K,连接PK,则PM=PK,
∵K为切点,
∴PK⊥AD,
∴四边形PCDK是矩形,
∴PK=CD,
∴PM=CD=8,
∴BP===.
综上所述:BP的长为3或.
故选C.
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=x2+bx+c与x轴交于A(-1,0)、B(3,0)两点.
(1)求该抛物线的解析式;
(2)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足S△PAB=10,并求出此时P点的坐标;
(3)设(1)中的抛物线交y轴交于C点,在该抛物线的对称轴上是否存在点Q,使△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷.常德市五中487班小玥组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:
(1)这次统计共抽查了 名学生;
(2)在扇形统计图中,表示“QQ”的扇形圆心角的度数为 度;
(3)将条形统计图补充完整;
(4)该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小王、小张和小梅打算各自随机选择本周六的上午或下午去高邮湖的湖上花海去踏青郊游.
(1)小王和小张都在本周六上午去踏青郊游的概率为_______;
(2)求他们三人在同一个半天去踏青郊游的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个水库的水位在某段时间内持续上涨,表记录了连续5小时内6个时间点的水位高度,其中表示时间,表示水位高度.
(小时) | 0 | 1 | 2 | 3 | 4 | 5 | … |
(米) | 3 | 3.3 | 3.6 | 3.9 | 4.2 | 4.5 | … |
(1)通过观察数据,请写出水位高度(米)与时间(小时)的函数解析式(不需要写出定义域);
(2)据估计,这种上涨规律还会持续,并且当水位高度达到8米时,水库报警系统会自动发出警报,请预测再过多久系统会发出警报.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点D、E分别在△ACD的边AB和AC上,已知DE∥BC,DE=DB.
(1)请用直尺和圆规在图中画出点D和点E(保留作图痕迹,不要求写作法),并证明所作的线段DE是符合题目要求的;
(2)若AB=7,BC=3,请求出DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,则组成第4个图案的基础图形的个数为( ).
A. 11B. 12C. 13D. 14
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,地面BD上两根等长立柱AB,CD之间悬挂一根近似成抛物线y= x2﹣x+3的绳子.
(1)求绳子最低点离地面的距离;
(2)因实际需要,在离AB为3米的位置处用一根立柱MN撑起绳子(如图2),使左边抛物线F1的最低点距MN为1米,离地面1.8米,求MN的长;
(3)将立柱MN的长度提升为3米,通过调整MN的位置,使抛物线F2对应函数的二次项系数始终为,设MN离AB的距离为m,抛物线F2的顶点离地面距离为k,当2≤k≤2.5时,求m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°得到△CBD,若点B的坐标为(2,0),则点C的坐标为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com