精英家教网 > 初中数学 > 题目详情

【题目】已知数轴上三点A,O,B表示的数分别为﹣3,0,1,点P为数轴上任意一点,其表示的数为x.
(1)如果点P到点A,点B的距离相等,那么x=
(2)当x= 时,点P到点A,点B的距离之和是6;
(3)若点P到点A,点B的距离之和最小,则x的取值范围是
(4)在数轴上,点M,N表示的数分别为x1 , x2 , 我们把x1 , x2之差的绝对值叫做点M,N之间的距离,即MN=|x1﹣x2|.若点P以每秒3个单位长度的速度从点O沿着数轴的负方向运动时,点E以每秒1个单位长度的速度从点A沿着数轴的负方向运动、点F以每秒4个单位长度的速度从点B沿着数轴的负方向运动,且三个点同时出发,那么运动 秒时,点P到点E,点F的距离相等.

【答案】-1;﹣4或2;﹣3≤x≤1;或2
【解析】解:(1)由题意得,|x﹣(﹣3)|=|x﹣1|,
解得x=﹣1;
(2)∵AB=|1﹣(﹣3)|=4,点P到点A,点B的距离之和是6,
∴点P在点A的左边时,﹣3﹣x+1﹣x=6,
解得x=﹣4,
点P在点B的右边时,x﹣1+x﹣(﹣3)=6,
解得x=2,
综上所述,x=﹣4或2;
(3)由两点之间线段最短可知,点P在AB之间时点P到点A,点B的距离之和最小,
所以x的取值范围是﹣3≤x≤1;
(4)设运动时间为t,点P表示的数为﹣3t,点E表示的数为﹣3﹣t,点F表示的数为1﹣4t,
∵点P到点E,点F的距离相等,
∴|﹣3t﹣(﹣3﹣t)|=|﹣3t﹣(1﹣4t)|,
∴﹣2t+3=t﹣1或﹣2t+3=1﹣t,
解得t=或t=2.
故答案为:(1)﹣1;(2)﹣4或2;(3)﹣3≤x≤1;(4)或2.
(1)根据数轴上两点间的距离的表示列出方程求解即可;
(2)根据AB的距离为4,小于6,分点P在点A的左边和点B的右边两种情况分别列出方程,然后求解即可;
(3)根据两点之间线段最短可知点P在点AB之间时点P到点A,点B的距离之和最小最短,然后写出x的取值范围即可;
(4)设运动时间为t,分别表示出点P、E、F所表示的数,然后根据两点间的距离的表示列出绝对值方程,然后求解即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】黑色正三角形与白色正六边形的边长相等,用它们镶嵌图案,方法如下:白色正六边形分上下两行,上面一行的正六边形个数比下面一行少一个,正六边形之间的空隙用黑色的正三角形嵌满,按第1,2,3个图案(如图)所示规律依次下去,则第n个图案中,黑色正三角形和白色正六边形的个数分别是(用含n的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形 中, 分别为边 的中点, 是对角线,过点 的延长线于点

(1)求证:
(2)若 ,求证:四边形 是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙、丙、丁四支足球队在世界杯预选赛中进球数分别为9,9,x,7,若这组数据的众数和平均数恰好相等,求出其中的x值以及此组数据的标准差.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ABC=100°,∠ACB=40°,∠ABC的平分线BD交AC于点D,∠ACB的平分线CP交BD于点D.

(1)BD与AC的位置关系是
(2)求∠BPC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】αβ是方程x2x20190的两个实数根,则α2的值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】预计下届世博会将吸引约69 000 000人次参观.将69 000 000用科学记数法表示正确的是(
A.0.69×108
B.6.9×106
C.6.9×107
D.69×106

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角三角形ABC中,∠ACB=90°,将△ABC绕点C逆时针方向旋转,使点A落在AB边上的点D处,得到△DEC.

(1)点B的对应点是点 , BC的对应线段是
(2)判断△ACD的形状.
(3)若AD=CD,求∠B和∠BCE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】比较大小:﹣9﹣13(填“>”或“<”号)

查看答案和解析>>

同步练习册答案