精英家教网 > 初中数学 > 题目详情

【题目】在正六边形ABCDEF中,N、M为边上的点,BM、AN相交于点P

(1)如图1,若点N在边BC上,点M在边DC上,BN=CM,求证:BPBM=BNBC;

(2)如图2,若N为边DC的中点,M在边ED上,AM∥BN,求 的值;

(3)如图3,若N、M分别为边BC、EF的中点,正六边形ABCDEF的边长为2,请直接写出AP的长.

【答案】
(1)

证明:在正六边形ABCDEF中,AB=BC,∠ABC=∠BCD=120°,

∵BN=CM,

∴△ABN≌△BCM,

∴∠ANB=∠BMC,

∵∠PBN=∠CBM,

∴△BPN∽△BCM,

=

∴BPBM=BNBC;


(2)

解:延长BC,ED交于点H,延长BN交DH于点G,取BG的中点K,连接KC,

在正六边形ABCDEF中,∠BCD=∠CDE=120°,

∴∠HCD=∠CDH=60°,

∴∠H=60°,

∴DC=DH=CH,

∵DC=BC,

∴CH=BC,

∵BK=GK,

∴2KC=GH,KC∥DH,

∴∠GDN=∠KCN,

∵CN=DN,∠DNG=∠CNK,

∴△DNG≌△CNK,

∴KC=DG,

∴DG= DH= DE,

∵MG∥AB,AM∥BG,

∴四边形MABG是平行四边形,

∴MG=AB=ED,

∴ME=DG= DE,即 =


(3)

解:如图3,过N作NH⊥AB,交AB的延长线于H,

∵∠ABC=120°,

∴∠NBH=60°,

Rt△NBH中,∠BNH=30°,BN=1,

∴BH= BN=

∴NH= =

Rt△ANH中,AN= = =

连接FC,延长FC与AN交于G,设FC与BM交于K,

易证△ANB≌△GNC,

∴CG=AB=2,AN=NG= ,FC=2AB=4,

∴FG=FC+CG=6,

∵EF∥BC,

∵FK+KC=6,

∴FK= ,KC= ,KG= +2=

∵KG∥AB,

=

设PG=7x,AP=3x,

由PG+AP=AG=2 得:7x+3x=2

x=

∴AP=3x=


【解析】(1)先证明△ABN≌△BCM,得∠ANB=∠BMC,再证明△BPN∽△BCM,列比例式可得结论;(2)作辅助线,构建等边三角形的三角形的中位线CK,先证明△CDH是等边三角形得:∠HCD=∠CDH=∠H=60°,DC=DH=CH,由△DNG≌△CNK,得KC=DG,DG= DH= DE,利用四边形MABG是平行四边形,
得MG=AB=ED,所以ME=DG= DE,即 = ;(3)如图3,作辅助线,构建直角三角形和全等三角形,根据直角三角形30°的性质得:BH= ,NH= ,利用勾股定理求AN= ,证明△ANB≌△GNC,利用EF∥BC和KG∥AB,列比例式可得: = ,设PG=7x,AP=3x,根据PG+AP=AG=2 得:7x+3x=2 ,可得结论.
【考点精析】利用相似三角形的应用对题目进行判断即可得到答案,需要熟知测高:测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长成比例”的原理解决;测距:测量不能到达两点间的举例,常构造相似三角形求解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是菱形,点G是BC延长线上一点,连结AG,分别交BD、CD于点E、F,连结CE.

(1)求证:∠DAE=∠DCE;
(2)当CE=2EF时,EG与EF的等量关系是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学九年级学生共450人,其中男生250人,女生200人.该校对九年级所有学生进行了一次体育测试,并随机抽取了50名男生和40名女生的测试成绩作为样本进行分析,绘制成如下的统计表:

(1)请解释“随机抽取了50名男生和40名女生”的合理性;

(2)从上表的“频数”、“百分比”两列数据中选择一列,用适当的统计图表示;

(3)估计该校九年级学生体育测试成绩不及格的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在直角三角形ABCAB=16cmAC=12cmBC=20cm.点P从点A开始以2厘米/秒的速度沿ABC的方向移动Q从点C开始以1厘米/秒的速度沿CAB的方向移动如果点PQ同时出发t(秒)表示移动时间那么

1)如图1请用含t的代数式表示当点QAC上时CQ= 当点QAB上时AQ=

当点PAB上时BP= 当点PBC上时BP=

2)如图2若点P在线段AB上运动Q在线段CA上运动QA=AP试求出t的值

3)如图3P点到达C点时PQ两点都停止运动AQ=BP试求出t的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】直线y= x与双曲线y= 的交点A的横坐标为2
(1)求k的值
(2)如图,过点P(m,3)(m>0)作x轴的垂线交双曲线y= (x>0)于点M,交直线OA于点N
①连接OM,当OA=OM时,直接写出PN﹣PM的值
②试比较PM与PN的大小,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1所示,在ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为直角边,A为直角顶点,在AD左侧作等腰直角三角形ADF,连接CF,AB=AC,BAC=90°.

(1)当点D在线段BC上时(不与点B重合),线段CFBD的数量关系与位置关系分别是什么?请给予证明.

(2)当点D在线段BC的延长线上时,(1)的结论是否仍然成立?请在图2中画出相应的图形,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元.
(1)求一只A型节能灯和一只B型节能灯的售价各是多少元;
(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知等边三角形ABC的边长为8,P是BC边上一点,连接AP,若AP=7,则BP的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:△ABC内接于⊙O,连接AO并延长交BC于点D.
(1)如图1,求证;∠ABC+∠CAD=90°;

(2)如图2,过点D作DE⊥AB于E,若∠ADC=2∠ACB.求证:AC=2DE;

(3)如图3,在(2)的条件下,连接BO交DE于点F,延长ED交⊙O于点G,连接AG,若AC=6 ,BF=OD,求线段AG的长.

查看答案和解析>>

同步练习册答案