精英家教网 > 初中数学 > 题目详情
9.若二次函数y=ax2+bx+c的x与y的部分对应值如下表:
x-4-3-2-10
y-50343
(1)求此二次函数的解析式;
(2)画出此函数图象(不用列表).
(3)结合函数图象,当-4<x≤1时,写出y的取值范围.

分析 (1)利用表中数据和抛物线的对称性可得到抛物线的顶点坐标为(-1,4),则可设顶点式y=a(x+1)2+4,然后把(0,3)代入求出a的值即;
(2)利用描点法画二次函数图象;
(3)观察函数函数图象,当-4<x≤1时,函数的最大值为4,于是可得到y的取值范围为-5<y≤4.

解答 解:(1)由表知,抛物线的顶点坐标为(-1,4),设y=a(x+1)2+4,
把(0,3)代入得a(0+1)2+4=3,解得a=-1,
∴抛物线的解析式为y=-(x+1)2+4,即y=-x2-2x+3;
(2)如图,

(3)当-4<x≤1时,-5<y≤4.

点评 本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.也考查了二次函数的性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.已知关于x的一元二次方程x2-6x+k=0的一根为2,求方程的另一根及k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,四边形ABCD是正方形,E点在AB上,F点在BC的延长线上,且CF=AE,连接DE、DF、EF.
①求证:△ADE≌△CDF;
②填空:△CDF可以由△ADE绕旋转中心D点,按逆时针方向旋转90度得到;
③若BC=3,AE=1,求△DEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.计算题
(1)$\sqrt{3}$×$\sqrt{27}$    
(2)$\frac{{\sqrt{32}}}{{\sqrt{2}}}$
(3)($\sqrt{2}$-1)($\sqrt{2}$+1)
(4)${(1-\sqrt{3})^2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.计算:
(1)$\sqrt{8}$-(π-$\frac{1}{2}$)0+$\root{3}{-64}$+|1-$\sqrt{2}$|
(2)5x$\sqrt{xy}$÷3$\sqrt{\frac{y}{x}}$•$\frac{1}{3}$$\sqrt{\frac{x}{y}}$
(3)(1-2$\sqrt{3}$)(1+2$\sqrt{3}$)-(2$\sqrt{3}$-1)2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.计算:
(1)3$\frac{1}{2}$+(-$\frac{1}{2}$)-(-$\frac{1}{3}$)+2$\frac{2}{3}$
(2)(-5)×(-7)-5×(-6)
(3)-16-|2-(-3)3|+(-1)4
(4)(-$\frac{3}{4}$-$\frac{5}{9}$+$\frac{7}{12}$)÷(-$\frac{1}{36}$)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.若a,b互为相反数,c、d互为倒数,m的绝对值是1,求-3(a+b)-(cd)2014+m2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.在一个不透明的袋子中,分别装有写着整数3,4,5,6的四个质地、大小均相同的小球.
(1)从四个小球中任意抽取一个,则该小球上的数字是奇数的概率为P=$\frac{1}{2}$;
(2)从四个小球中随机地摸取一个小球不放回,再随机抽取一个小球,利用树状图或者列表法求两次球上的数字都小于6的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.阅读下面材料:
小天在学习锐角三角函数中遇到这样一个问题:在Rt△ABC中,∠C=90°,∠B=22.5°,则tan22.5°=$\sqrt{2}$-1

小天根据学习几何的经验,先画出了几何图形(如图1),他发现22.5°不是特殊角,但它是特殊角45°的一半,若构造有特殊角的直角三角形,则可能解决这个问题.于是小天尝试着在CB边上截取CD=CA,连接AD(如图2),通过构造有特殊角(45°)的直角三角形,经过推理和计算使问题得到解决.
请回答:tan22.5°=$\sqrt{2}$-1.
参考小天思考问题的方法,解决问题:
如图3,在等腰△ABC 中,AB=AC,∠A=30°,请借助△ABC,构造出15°的角,并求出该角的正切值.

查看答案和解析>>

同步练习册答案