【题目】如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC的顶
点都在格点上,建立平面直角坐标系.
(1)点A的坐标为 ,点C的坐标为 .
(2)将△ABC向左平移7个单位,请画出平移后的△A1B1C1.若M为△ABC内的一点,其坐标为(a,b),则平移后点M的对应点M1的坐标为 .
(3)以原点O为位似中心,将△ABC缩小,使变换后得到的△A2B2C2与△ABC对应边的比为1∶2.请在网格内画出△A2B2C2,并写出点A2的坐标: .
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点P的坐标为(0,4),直线y=x-3与x轴、y轴分别交于点A、B,点M是直线AB上的一个动点,则PM的最小值为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O的直径AB=8,C为弧AB的中点,P为⊙O上一动点,连接AP、CP,过C作CD⊥CP交AP于点D,点P从B运动到C时,则点D运动的路径长为____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,Rt△ABC中,∠ABC=90°,∠CAB的平分线交BC于点O,以O为圆心,OB长为半径作⊙O.
(1)求证:⊙O与AC相切.
(2)若AB=6,AC=10.
①求⊙O的半径;
②如图②,延长AO交⊙O于点D,过点D作⊙O的切线,分别交AC、AB的延长线于E、F,试求EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.
(1)填空:∠AHC ∠ACG;(填“>”或“<”或“=”)
(2)线段AC,AG,AH什么关系?请说明理由;
(3)设AE=m,
①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.
②请直接写出使△CGH是等腰三角形的m值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知四边形ABCD的一组对边AD、BC的延长线交于点E.
(1)如图①,若∠ABC=∠ADC=90°,求证:ED·EA=EC·EB;
(2)如图②,若∠ABC=120°,cos∠ADC=,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;
(3)如图③,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等腰直角△ABC中,AB=BC,∠ABC=90°,BD⊥AC于D,点M在AD上,连接BM,过点C作CN⊥BM于点E,交AB于N,交BD于F,连接DE,AE.
(1)若∠BCN=30°,EN=2,求AN的长;
(2)若DE⊥AE于E,DG⊥DE交CN于G,求证:CE=AE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知:Rt△ABC中,∠C=90°,AC=BC=2,将一块三角尺的直角顶点与斜边AB的中点M重合,当三角尺绕着点M旋转时,两直角边始终保持分别与边BC、AC交于D,E两点(D、E不与B、A重合).
(1)求证:MD=ME;
(2)求四边形MDCE的面积:
(3)若只将原题目中的“AC=BC=2”改为“BC=a,AC=b,(a≠b)”其它都不变,请你探究:MD和ME还相等吗?如果相等,请证明;如果不相等,请求出MD∶ME的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若点A(3,4)是反比例函数图象上一点,则下列说法正确的是( )
A. 图象分别位于二、四象限B. 点(2,﹣6)在函数图象上
C. 当x<0时,y随x的增大而减小D. 当y≤4时,x≥3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com