【题目】问题背景:
如图①,在四边形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究线段AC,BC,CD之间的数量关系.
小吴同学探究此问题的思路是:将△BCD绕点D,逆时针旋转90°到△AED处,点B,C分别落在点A,E处(如图②),易证点C,A,E在同一条直线上,并且△CDE是等腰直角三角形,所以CE=CD,从而得出结论:AC+BC=CD.
简单应用:
(1)在图①中,若AC=2,BC=4,则CD= .
(2)如图③,AB是⊙O的直径,点C、D在⊙上,弧AD=弧BD,若AB=13,BC=12,求CD的长.
拓展规律:
(3)如图4,△ABC中,∠ACB=90°,AC=BC,点P为AB的中点,若点E满足AE=AC,CE=CA,且点E在直线AC的左侧时,点Q为AE的中点,则线段PQ与AC的数量关系是 .
【答案】(1);(2);(3)或.
【解析】
(1)由题意可知:AC+BC= CD,所以将AC与BC的长度代入即可得出CD的长度;(2)连接AC、BD、AD即可将问题转化为第(1)问的问题,利用题目所给出的证明思路即可求出CD的长度;(3)当点E在直线AC的左侧时,连接CQ、CP后,利用(2)的结论进行求解即可.
(1)由题意知:AC+BC= CD,
∴2+4 = CD,
∴CD=3;
(2)解:连接AC、BD、AD,
∵AB是⊙O的直径,
∴∠ADB=∠ACB=90°,
∵ ,
∴AD=BD,
将△BCD绕点D,逆时针旋转90°到△AED处,如图③,
∴∠EAD=∠DBC,
∵∠DBC+∠DAC=180°,
∴∠EAD+∠DAC=180°,
∴E、A、C三点共线,
∵AB=13,BC=12,
∴由勾股定理可求得:AC=5,
∵BC=AE,
∴CE=AE+AC=17,
∵∠EDA=∠CDB,
∴∠EDA+∠ADC=∠CDB+∠ADC,
即∠EDC=∠ADB=90°,
∵CD=ED,
∴△EDC是等腰直角三角形,
∴CE=CD,
∴CD= ;
(3)当点E在直线AC的左侧时,如图④,
连接CQ,PC,
∵AC=BC,∠ACB=90°,点P是AB的中点,
∴AP=CP,∠APC=90°,
又∵CA=CE,点Q是AE的中点,
∴∠CQA=90°,
设AC=a,
∵AE= AC,
∴AE= a,
∴AQ= AE= ,
由勾股定理可求得:CQ= a,
由(2)的证明过程可知:AQ+CQ= PQ,
∴ PQ= a+ a,
∴ PQ= AC或;
∴当点E在直线AC的左侧时,线段PQ与AC的数量关系是 PQ= AC或.
科目:初中数学 来源: 题型:
【题目】(1)(操作发现)
如图1,将△ABC绕点A顺时针旋转50°,得到△ADE,连接BD,则∠ABD= 度.
(2)(解决问题)
①如图2,在边长为的等边三角形ABC内有一点P,∠APC=90°,∠BPC=120°,求△APC的面积.
②如图3,在△ABC中,∠ACB=90°,AC=BC,P是△ABC内的一点,若PB=1,PA=3,∠BPC=135°,则PC= .
(3)(拓展应用)
如图4是A,B,C三个村子位置的平面图,经测量AB=4,BC=3,∠ABC=75°,P为△ABC内的一个动点,连接PA,PB,PC.求PA+PB+PC的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市某幼儿园六一期间举行亲子游戏,主持人请三位家长分别带自己的孩子参加游戏,主持人准备把家长和孩子重新组合完成游戏,A、B、C分别表示三位家长,他们的孩子分别对应的是a、b、c.
(1)若主持人分别从三位家长和三位孩子中各选一人参加游戏,恰好是A、a的概率是多少(直接写出答案)
(2)若主持人先从三位家长中任选两人为一组,再从孩子中任选两人为一组,四人共同参加游戏,恰好是两对家庭成员的概率是多少.(画出树状图或列表)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形的边长为,点与原点重合点在轴的正半轴上,点在轴的负半轴上,将正方形ABCD绕点A逆时针旋转30°至正方形AB′C′D′的位置,B′C′与CD相交于点M,则点M的坐标为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为研究学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干学生的兴趣爱好;并将调查的结果绘制成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:
(1)在这次研究中,一共调查了 名学生;
(2)补全条形统计图,并计算阅读部分圆心角是 度.
(3)若该校九年级爱好阅读的学生有150人,估计九年级有 名学生?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,以斜边AB为直径作Rt△ABC的外接圆,圆心为O,P为弧BC的中点.
(1)只用直尺和笔作图:在弧ACB另一侧的圆上找一点G,连接PG交BC于点D,使D成为BC中点.并说明你的理由.
(2)在(1)小题图形基础上,在DG上取一点K,使DK=DP,连接CK、BK,判断四边形PBKC的形状,并证明你的结论.
(3)如题图2,取CP的中点E,连接ED并延长ED交AB于点H,连接PH,求证:当∠CAB=60°时,H为AB四等分点.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,BM切⊙O于点B,点P是⊙O上的一个动点(点P不与A,B两点重合),连接AP,过点O作OQ∥AP交BM于点Q,过点P作PE⊥AB于点C,交QO的延长线于点E,连接PQ,OP.
(1)求证:△BOQ≌△POQ;
(2)若直径AB的长为12.
①当PE= 时,四边形BOPQ为正方形;
②当PE= 时,四边形AEOP为菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某养殖场在养殖面积扩建中,准备将总长为米的篱笆围成 矩形形状的鸡舍,其中一边利用现有的一段足够长的围墙,其余三边 用篱笆,且在与墙平行的一边上开一个米宽的门.设边长为米, 鸡舍面积为平方米.
求出与的函数关系式;(不需写自变量的取值范围).
当鸡舍的面积为平方米时,求出鸡舍的一边的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com